Debugging with DDD

User’s Guide and Reference Manual
First Edition, for DDD Version 3.2
Last updated 2000-01-03

Andreas Zeller

Debugging with DDD
User's Guide and Reference Manual

Copyright(© 2000 Universitat Passau
Lehrstuhl fir Software-Systeme
InnstralRe 33

D-94032 Passau

GERMANY

Distributed by

Free Software Foundation, Inc.
59 Temple Place — Suite 330
Boston, MA 02111-1307

USA

DpDD and this manual are available via

theDDD www page

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the sections entitled “Copying” and “GNU General Public
License” (seeé\ppendix G [License], page 1®are included exactly as in the original, and provided

that the entire resulting derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this manual into another language, under
the above conditions for modified versions, except that this permission notice may be stated in a
translation approved by the Free Software Foundation.

Send questions, comments, suggestions, etdd@gnu.org .

Send bug reports toug-ddd@gnu.org

http://www.gnu.org/software/ddd/
mailto:ddd@gnu.org
mailto:bug-ddd@gnu.org

Short Contents

SUMMary Of DDD. . v v it i it s s s i i i i s e e e e 1.
1 ASampleDDD SeSSION . « v v v vt v vt v n s st st 5
2 Gettinglnand Outof DDD. . .« v v ot i e et e e e 15
3 The DDDWINAOWS. & v v v vt te e s e s e s e s enen s s sn e e nn s 39
4 Navigating throughtheCode. oot i i i e e e e 71
5 StoppingtheProgram. . . .« v v v vt v i i it i ittt i s 79
6 RunningtheProgram.c. v iii ittt cn s 89
7 ExaminingData . .. v vt i it s s i i i 103
8 Machine-Level Debugging. « « c v v v v v e vt e et it e 137
9 Changingthe Program. i i ittt e s i ne e 141
10 The Command-Lineinterfacec ittt i 143
Appendix A Application Defaults v oo vt i i e e 155
Appendix B BugsandHow ToReportThem . . v v v v v v v v vt v v v nnnns 165
Appendix C Configuration NOtES. .+« v v v v vt i et vt e e e n s e nn s as 171
AppendiXD Dirty THCKS. + v v v v v ettt et e s s v an st s s et nnnnas 175
AppendixE EXtending DDD. .+ v v v v v v i i e e e e e 177
Appendix F Frequently Answered Questians. oo v v v i i i i e n e 179
Appendix G GNU General PublicLicense v v v i i v i e v v i e e naas 181
AppendixH Helpand Assistanceo v i ittt i e i e e 189
LabelIndeX. « v v v o i i e 191
KeY INAEX o v vt et e it it it e e e ettt s s 195
Command INdeX « v v v vt vt it s e e s 197
ResoUrce INdeX .« v v v vt et it s s s e e e 199
File INdeX. v v ot e e e e e e e 203

(0] o= o B 1 o[- 205

Debugging with DDD

Table of Contents

SummMary of DDD . ..o e e e 1
AboutthisManual 2
Free software.o 2.
GettiNng DDDt e 2.
Contributors tO DDD . .. v o 3
HIStory Of DDD. ..o e 3.

1 ASample DDD SeSSION. . .. v v vt v it 5
1.1 Sample Program..........ccoiiiiiiii i 14

2 Gettinglnand Outof DDDcciiiiiiiiii i 15
2.1 InVOKING DDD. ... 15

2.1.1 Choosing an Inferior Debugger.................... 15

2.1.2 DDDOPUONS. ..ottt 16

2.1.3 XOPUONS .. i e e 24

2.1.4 Inferior Debugger Options. 24
2141 GDBOptions..........cvvivviiiiiiann. 24

2.1.4.2 DBX and Ladebug Options.............. 25

2.1.43 XDBOPLONS.o 25

2144 JDBOptions..........c.coiiiiiiii. 25

2.1.45 PYDBOPLONS.oviiiiiiiiiannn. 26

2.1.46 PerlOptions...........ccoviiiiiiiiaii.n 27

2.1.5 MultipleDDD Instancesccovvivinnannn.. 27

2.1.6 XWaAINGS. .. .voet it 27

2.2 QUItING DDD. ...t e 27
2.3 Persistent SEeSSIONS.t 28
2.3.1 Saving SeSSIONS.t 28

2.3.2 Resuming SESSIONS........ovviiiiiiiiieiann. 29

2.3.3 Deleting Sessions. 30

2.3.4 Customizing SessioNs.ccoviiviiiiineannt. 31

2.4 Remote Debugging.........ccoviiiiiiiii e 31
2.4.1 RunningDDDonaRemoteHost................. 31

2.4.2 Using DDD with a Remote Inferior Debugger... .. 31
2.4.2.1 Customizing Remote Debugging........ 32

2.4.3 Debugging a Remote Program.................... 33

2.5 Customizing Interaction with the Inferior Debugger......... 33
2.5.1 Invoking an Inferior Debugger..................... 33

2.5.2 |Initializing the Inferior Debugger.................. 34
2.5.2.1 GDB Initialization 34

2.5.2.2 DBXInitialization........................ 35

2.5.2.3 XDB Initialization. 35

2.5.2.4 JDB Initialization........................ 35

iv Debugging with DDD

2.5.2.5 PYDB Initialization...................... 36

2.5.2.6 Perl Initialization......................... 36

2.5.2.7 Openingthe Selection................... 36

2.5.3 Communication with the Inferior Debugget....... 36

3 The DDD WINAOWS. . . v v ittt i i e i e ie e ane e 39
3.1 TheMenuBar..... ... e 39
3.1.1 TheFileMenu............cooiiiiiiiiiiiii.. 40

3.1.2 TheEditMenuU............coiiiiiiii i 41

3.1.3 TheViewMenu..........oooiiiiiiiiiiniinnna.. 42

3.1.4 TheProgramMenu.................cvvveee.... . 43

3.1.5 TheCommandsMenu................ccoivvunn.. 44

3.16 TheStatusMenu..........ccovviiiiieiinennnnn. 45

3.1.7 TheSource Menu..............ccovieiiieennn.n.. 45

3.1.8 TheDataMenu..............cciiiiiiiiiiiniin... 46

3.1.9 The Maintenance Menu.................coovon.. a7

3.1.10 TheHelpMenu...........coiiiiiiiiii i 48

3.1.11 Customizingthe MenuBar....................... 48
3.1.11.1 Auto-RaiseMenus..................... 48

3.1.11.2 Customizing the EditMenu............. 49

3.2 TheToolBar. .. .o e 49
3.2.1 Customizingthe ToolBar......................... 51

3.3 TheCommand TOOl. ...t 53
3.3.1 Customizing the Command Tool.................. 55
3.3.1.1 Disabling the Command Taal............ 55

3.3.2 Command Tool Position. 56
3.3.2.1 Customizing Tool Decoration............ 57

34 GettingHelp . ..o 57
3.5 Undoing and Redoing Commands.c..ou.... 58
3.6 Customizing DDD. ..ot e 58
3.6.1 How CustomizingDDDWorks 58
3.6.1.1 RESOUICES........coviiiiieniieennnnn. 58

3.6.1.2 Changing Resources.................... 59

3.6.1.3 SavingOptions.............cooviiiinnn. 59

3.6.2 CustomizingDDDHelp.................ccooinit. 59
3.6.2.1 ButtonTipS......cvvviiiiie i, 59

3.6.22 Tipoftheday........................ ... 60

3.6.2.3 HelpHelpers............ooooiiiint. 60

3.6.3 CustomizingUndo.............cooviiiiiiiiiin.. 61

3.6.4 Customizing the DDD Windows. 62
3.6.4.1 SplashScreen..........................| 62

3.6.4.2 Window Layout.............ccoviuvinn... 63

3.6.4.3 CustomizingFonts...................... 64

3.6.4.4 TogglingWindows....................... 66

3.6.45 TextFields...............coiiiiiiit. 67

3646 ICONS......cooiiiiiii 67

3.6.4.7 AddingButtons...................ooil 68

3.6.4.8 More Customizations.oo.... 68

3.6.5 Debugger Settings. ... 68

4 Navigating throughtheCode. 71
4.1 Compiling for Debugging. ... 71
4.2 Opening Files.o 71
4.2.1 Opening Programs.ccovviiieeiiinneannn. 71

4.2.2 Opening Core DUMPS.ooiviiiiii i 72

4.2.3 Opening Source Files...............cooiiiiia.. 72

4.2.4 FilteringFiles. 73

4.3 Lookingup ltems. ... e 173
4.3.1 Looking up Definitions............................ 73

432 TextualSearch.......... .o, 74

4.3.3 Looking up Previous Locations. 74

4.3.4 Specifying Source Directories..................... 74

4.4 Customizing the Source Window. 75
4.4.1 CustomizingGlyphs................... ..ol 76

4.4.2 Customizing Searching........................... 77

4.4.3 Customizing Source Appearance 77

4.4.4 Customizing Source Scrolling..................... 78

4.4.5 Customizing Source Lookup...............ooo.. 78

4.4.6 Customizing File Filtering......................... 78

5 Stoppingthe Program.t 79
5.1 BreakpointS.........ccoviiiiiiiiiiiiiiiiiii i A9
5.1.1 Setting Breakpoints..................ccvvvenn.. 79
5.1.1.1 Setting Breakpoints by Location......... 79

5.1.1.2 Setting Breakpoints by Name........... 80

5.1.1.3 Setting Regexp Breakpoints............. 80

5.1.2 Deleting Breakpoints...............coviiiin.. 80

5.1.3 Disabling Breakpoints...................ccoviunt 81

5.1.4 Temporary Breakpoints........................... 81

5.1.5 Editing Breakpoint Properties..................... 82

5.1.6 BreakpointConditions..................ccovenn.. 82

5.1.7 Breakpointignore Counts...............c.ovvuenn.. 83

5.1.8 BreakpointCommands....................c.ovnnt. 83

5.1.9 Moving and Copying Breakpoints................. 84

5.1.10 Looking up Breakpoints......................... 84

5.1.11 Editing all Breakpoints.......................... 84

5.1.12 Hardware-Assisted Breakpoints................. 85

5.2 WatChpoints. ... 85
5.2.1 Setting Watchpoints.....................ooii. 86

5.2.2 Editing Watchpoint Properties..................... 86

5.2.3 Editing all Watchpoints........................... 86

5.2.4 Deleting Watchpoints................coiiiiin.s 36

5.3 INerruptingo 36
5.4 Stopping X Programs.........oieeeiiiee it eniiinaans 87
5.4.1 Customizing Grab Checking 87

Vi Debugging with DDD

6 RunningtheProgram.ccoiiiiiiiiinnnnennnnn. 89
6.1 Starting Program Execution..................cciiiiiann.. 89
6.1.1 Your Program's Arguments..............cccvvenn.. 90

6.1.2 Your Program’s Environment...................... 90

6.1.3 Your Program’s Working Directory 90

6.1.4 Your Program’s Inputand Output 90

6.2 Using the Execution Window.cccoiiieeninn... 91
6.2.1 Customizing the Execution Windaw. 92

6.3 Attachingtoa RunningProcess................coovvevnnn.. 92
6.3.1 Customizing Attaching to Processes.............. 93

6.4 Program StOPS.viii i e 94
6.5 Resuming Executian..............ccciiiiiiiiiiiii .. 94
6.5.1 ContinUINGccoviiiii e 94

6.5.2 Steppingoneline.............ccooviiiiiiiiiiin... 94

6.5.3 Continuingtothe NextLine....................... 94

6.5.4 ContinuingUntilHere....................ooovat. 95

6.5.5 Continuing Until a Greater Line is Reached....... 95

6.5.6 Continuing Until Function Returns. 95

6.6 Continuing at a Different Address. 95
6.7 ExaminingtheStack.............cooiiiiiiiiiiii 96
6.7.1 StackFrames............ ... i, 96

6.7.2 Backtraces............ooiiiiii a7

6.7.3 SelectingaFrame...................ciiiiin. 98

6.8 “Undoing” Program Execution......................coou0s. 98
6.9 Examining Threads.............cccoiiiiiiiiiiiiininn.. 99
6.10 Handling Signals ... 100
6.11 Killingthe Program.............ccoiiiiiiiiiii ... 102
7 ExaminingData.oiiiiiiii e e 103
7.1 Showing Simple Values using Value TipsS.................. 103
7.2 Printing Simple Values in the Debugger Console.......... 104
7.3 Displaying Complex Values in the Data Window. 105
7.3.1 DisplayBasics.........ciiiiiiiii 105
7.3.1.1 Creating Single Displays............... 105

7.3.1.2 Selecting Displays..................... 106

7.3.1.3 Showing and Hiding Details. 107

7.3.1.4 Rotating Displays...................... 108

7.3.1.5 Displaying Local Variables............. 109

7.3.1.6 Displaying Program Status............. 110

7.3.1.7 Refreshing the Data Window........... 111

7.3.1.8 Clustering Displays.................... 111

7.3.1.9 Creating Multiple Displays............. 112

7.3.1.10 Editing all Displays.................... 112

7.3.1.11 Deleting Displays..................... 114

7.3.1.12 Customizing Displays................. 114

7.3.2 Displaying Arrays. ..o 115
7.3.21 ArraySIlices. ..., 115

7.3.2.2 RepeatedValues....................... 116

7.3.2.3 ArraysasTables....................... 116

7.3.3 Assignmentto Variables......................... 117

7.3.4 Examining Structures.c.coiiiiiiiin.. 117
7.3.4.1 Displaying Dependent Values.......... 117

7.3.4.2 Dereferencing Pointers................. 118

7.3.4.3 Shared Structures...................... 118

7.3.4.4 Display Shortcuts..................... 120

7.3.5 LayoutingtheGraph............................ 122
7.3.5.1 MovingDisplays........................ 122

7.3.5.2 ScrollingData.......................... 122

7.3.5.3 Aligning Displays....................... 123

7.3.5.4 AutomaticLayout...................... 123

7.3.5.5 Rotatingthe Graph..................... 123

7.3.6 PrintingtheGraph.............................. 124

7.3.7 HowDisplaysareCreated 125
7.3.7.1 HandlingBoxes........................ 125

7.3.7.2 Building BoxesfromData.............. 126

7.3.7.3 Customizing Display Appearance...... 127

7.4 PlottingValues. ... e 129
7.4.1 Plotting ArraysS. . ..veviii i 129

7.4.2 Changing the Plot Appearance................... 130

7.4.3 Plotting Scalars and Composites................. 130

7.4.4 Plotting Display Histories 131

7.45 PrintingPlots. ... 131

7.4.6 Entering Plotting Commands..................... 132

7.4.7 ExportingPlotData.................ccooviiiin 132

7.4.8 AnimatingPlots. ... 132

7.4.9 CustomizingPlots................ccoiiin 133
7.4.9.1 Gnuplotinvocation..................... 133

7.4.9.2 GnuplotSettings....................... 133

7.5 EXamining MEMOIY.t ieens 134
8 Machine-Level Debugging.o, 137
8.1 ExaminingMachineCode..............coviiiiiiiiiinn.. 137
8.2 Machine Code Executian............c.ooviiiiiiieaninann.. 138
8.3 Examining Registers. ..o 138
8.4 Customizing Machine Code..................ccovviiiinnn.. 139
9 Changingthe Program.couiiiiniiinnnnennnn 141
9.1 EditingSource Code.ooviiiiiiiii 141
9.1.1 Customizing Editing....................ooiiL. 141

9.1.2 In-PlaceEditing...........ccoiiiiiiiiinn 141

9.2 ReCOMPIliNg ...t 142

9.3 Patching

Vii

viii Debugging with DDD

10 The Command-LinelInterface............. v.... 143
10.1 EnteringCommands.coiiiiiiiiii i 143
10.1.1 Command Completion.......................... 143

10.1.2 Command History.ccovieeeiiin e 144

10.2 Entering Commandsatthe TTY....................oo..t. 145
10.3 Integrating DDD 146
10.3.1 UsingDDDwithEmacs......................... 146

10.3.2 Using DDDwith XEmacs............ccovivunn.n. 146

10.3.3 Using DDD WithXXGDBvvvvve i iinnn 146

10.4 Defining Buttons. ... 147
10.4.1 CustomizingButtons...................ooit 148

105 DefiningCommands..............ccoiiiiiiiiiieiinn... 150
10.5.1 Defining Simple Commands using GDB........ 150

10.5.2 Defining Argument Commands using GDB...... 151

10.5.3 Defining Commands using Other Debuggers... 152

Appendix A ApplicationDefaults o oL 155
Al ACHONS. .. 155

A1l General Actions. ... 155

A.1.2 DataDisplay Actions.ccoeviiiinn... 155

A.1.3 Debugger Console Actions...................... 158

A.1.4 Source Window Actions...............c.coevvnn.. 159

A2 IMaAgES ..ttt 160
Appendix B Bugs and How ToReport Them. 165
B.1 WheretoSendBugReports. ... 165

B.2 IsitaDDDBUQ?oiiiii i 165

B.3 HowtoReportBugs.........cooviiiiiiiiii et 165

B.4 WhattoIncludeinaBugRepart.................oiin.. 166

B.5 Getting DiagnostiCs.ooviiii i 166

B.5.1 LOQOiNg.ovii i 166

B.5.1.1 DisablingLogging...................... 167

B.5.2 DebuggingDDD. ...t 167

B.5.3 Customizing Diagnostics........................ 167

Appendix C Configuration Notes.ccoviiinnnnn... 171
C.1 UsingDDDWithGDB.........oviiiiiiiii i 171

C.2 UsingDDD WIith DBX. ...\t 171

C.3 Using DDD with Ladebug..............coooiviiiiiiii.. 171

C.4 UsingDDDwith XDB....... ..ot 171

C.5 UsingDDDWIithJDBcoiiiiiii i 172

C.6 UsingDDDwithPerl...........c.iiiiiiii i, 172

C.7 UsingDDDwith LessSTif........covviviiiii i, 172

Appendix D Dirty THCKS . ..o e e e e e 175

Appendix E ExtendingDDDc. i 177
Appendix F Frequently Answered Questions. 179
Appendix G GNU General Public License. 181
Preamble. 181
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION ... e 181

How to Apply These Terms to Your New Programs.............. 186
AppendixH Helpand Assistance., 189
LabelIndexcvv i e e e e 191
Key IndeX e e e e 195
Command INdeXot e e e 197
Resource IndeX.cv i e e e e 199
FileIndeXo e e 203

ConCepPtINdEeX. vt e e e 205

Debugging with DDD

Summary of DDD 1

Summary of DDD

The purpose of a debugger suchoas is to allow you to see what is going on “inside” another
program while it executes—or what another program was doing at the moment it crashed.

DDD can do four main kinds of things (plus other things in support of these) to help you catch
bugs in the act:

e Start your program, specifying anything that might affect its behavior.

e Make your program stop on specified conditions.

e Examine what has happened, when your program has stopped.

e Change things in your program, so you can experiment with correcting the effects of one bug
and go on to learn about another.

Technically speakingypp is a front-end to a command-line debugger (calledrior debugger,
because it lies at the layer beneathD). bbDD supports the following inferior debuggers:

e To debugexecutable binariesg/ou can usebpD with ¢DB, DBX, Ladebug, Or XDB.

GDB, the aNU debugger, is the recommended inferior debuggepiob. GDB supports
native executables binaries originally written in G, Java, Modula-2, Modula-3, Pas-
cal, Chill, Ada, and FORTRAN. (seg=ction “Usingaps with Different Languages” in
Debugging with ¢DB, for information on language support@ns.)

As an alternative t@DB, you can useDD with the bBx debugger, as found on several
UNIX systems. MosbBx incarnations offer fewer features thams, and some of the
more advancedBx features may not be supportedibyp. However, usingpsx may be
useful ifapB does not understand or fully support the debugging information as generated
by your compiler.

As an alternative te:pB andDpBX, you can us®DpD with Ladebug, as found on DEC sys-
tems. Ladebug offers fewer features tlaws, and some of the more advanced Ladebug
features may not be supportedibyp. However, using Ladebug may be usefukifs or

DBX do not understand or fully support the debugging information as generated by your
compiler!

As another alternative taDB, you can useoDD with the XDB debugger, as found on
HP-UX systems.

e To debuglava byte-code programgou can usenpbp with JpB, the Java debugger, as ok
1.1 and later.

e To debugPython programsyou can use&DD with PYDB, a Python debugger.

e To debugPerl programsyou can use®DD with the Perl debugger, as of Perl 5.003 and later.

SeeSection 2.1.1 [Choosing an Inferior Debugger], pagef@bchoosing the appropriate infe-
rior debugger. Se€hapter 1 [Sample Session|, pagddr getting a first impression afpD.

L within ppp (and this manual), Ladebug is considereaska variant. Hence, everything said fopx also
applies to Ladebug, unless stated otherwise.

2

xpB Will no longer be maintained in futunepp releases. Use a recamts version instead.

2 Debugging with DDD

About this Manual

This manual comes in several formats:

e The Info format is used for browsing on character devices; it comes without pictures. You
should have a local copy installed, which you can browse via Emacs, the standrdtone
program, or frombDD via ‘Help = bpDD Manual .

TheppD source distributionddd-3.2.tar.gz ’ contains this manual as pre-formatted info
files; you can also download them from
thepDD Www page

e ThePostScriptformat is used for printing on paper; it comes with pictures as well.

The ppD source distribution ddd-3.2.tar.gz ' contains this manual as pre-formatted
PostScript file; you can also download it from
theDDD Wwww page

e The PDF format is used for printing on paper as well as for online browsing; it comes with
pictures as well.

ThepDD source distributionddd-3.2.tar.gz ' contains this manual as pre-formatted PDF
file; you can also download it from
thepDDD Www page

e The HTML format is used for browsing on bitmap devices; it includes several pictures. You
can view it using a HTML browser, typically from a local copy.

A pre-formatted HTML version of this manual comes in a sepavate package
‘ddd-3.2-html-manual.tar.gz "> you can browse and download it via
theDDD www page

The manual itself is written ingXinfo format; its source codeddd.texi ’is contained in the
DDD source distributionddd-3.2.tar.gz '

The picture sources come in a separate packdde-3.2-pics.tar.gz "; you need this
package only if you want to re-create the PostScript, HTML, or PDF versions.

Free software

DDD is free; this means that everyone is free to use it and free to redistribute it on a free basis.
DDD is not in the public domain; it is copyrighted and there are restrictions on its distribution, but
these restrictions are designed to permit everything that a good cooperating citizen would want to
do. What is not allowed is to try to prevent others from further sharing any versiomofthat
they might get from you. The precise conditions are found indke General Public License that
comes withbpbp; SeeAppendix G [License], page 13for detalils.

The easiest way to get a copy obD is from someone else who has it. You need not ask for
permission to do so, or tell any one else; just copy it.

Getting DDD

If you have access to the Internet, you can get the latest versimmmfrom the anonymousTp
server ftp.gnu.org "in the directory /gnu/ddd . This should contain the following files:

http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/

Summary of DDD 3

‘*ddd- version.tar.gz’
TheppD source distribution. This should be all you need.

“‘ddd- version-html-manual.tar.gz’
The ppp manual in HTML format. You need this only if you want to install a local
copy of theppp manual in HTML format.

“*ddd- version-pics.tar.gz’
Sources of images included in tlmD manual. You need this only if you want to
recreate thepp manual.

DDD can also be found at numerous other archive sites around the world; check the file
‘ANNOUNCIH a bpD distribution for the latest known list.

Contributors to DDD

Dorothea Liutkehaus and Andreas Zeller were the original authar®pf Many others have
contributed to its development. The fileSHangeLog ' and ‘THANKSIn the ppp distribution
approximates a blow-by-blow account.

History of DDD

The history ofbDD is a story of code recycling. The oldest partsbafb were written in 1990,
whenAndreas ZelledesignedvsL, a box-based visual structure language for visualizing data and
program structures. ThesL interpreter and the Box library became part of Andreas’ Diploma
Thesis, a graphical syntax editor based on the Programming System Genecator

In 1992, thevsL and Box libraries were recycled for therA project. FOrNORA, an experi-
mental inference-based software development tool set, Andreas wrote a graph editor (based on
and the Box libraries) and facilities for inter-process knowledge exchange. Based on these tools,
Dorothea Litkehauéow Dorothea Krabiel) realizedppp as her Diploma Thesis, 1994

The originalppp had no source window; this was added by Dorothea during the winter of
1994-1995. In the first quarter of 1995, finally, Andreas completed by adding command and
execution windows, extensions foBx and remote debugging as well as configuration support for
several architectures. Since then, Andreas has further maintained and extemgdmhsed on the
comments and suggestions of severab users around the world. See the comments inothe
source for details.

Major bDD events:
April, 1995 ppD 0.9: FirstbpD beta release.
May, 1995 DDD 1.0: First publicbDpD release.

December, 1995
ppD 1.4: Machine-level debugging, glyphs, Emacs integration.

October, 1996
pDD 2.0: Color displaysxDB support, generioBx support, command tool.

May, 1997 ppD 2.1: Alias detection, button tips, status displays.

November, 1997
DDD 2.2: Sessions, display shortcuts.

4 Debugging with DDD

June, 1998 ppp 3.0: Icon tool bar, Java suppostyB support.

December, 1998
pDD 3.1: Data plotting, Perl support, Python support, Undo/Redo.

January, 2000
pDD 3.2: New manual, Readline support, Ladebug support.

Chapter 1: A Sample DDD Session 5

1 A Sample DDD Session

You can use this manual at your leisure to read all abbaut. However, a handful of features
are enough to get started using the debugger. This chapter illustrates those features.

The sample progransample.c ' (seeSection 1.1 [Sample Program], page &xhibits the fol-
lowing bug. Normallysample should sort and print its arguments numerically, as in the following
example:

$ Jsample 8 75 4 1 3
134578

However, with certain arguments, this goes wrong:

$./sample 8000 7000 5000 1000 4000
1000 1913 4000 5000 7000

Although the output is sorted and contains the right number of arguments, some arguments are
missing and replaced by bogus numbers; @860 is missing and replaced 1913 .!

Let us usepDD to see what is going on. First, you must compsarmple.c ’ for debugging
(seeSection 4.1 [Compiling for Debugging], page)/giving the -g ' flag while compiling:
$ gcc -g -0 sample sample.c
Now, you can invokeoDD (seeChapter 2 [Invocation], page Ybn thesample executable:
$ ddd sample

L Actual numbers and behavior on your system may vary.

6 Debugging with DDD

After a few secondshpD comes up. Th&ource Window contains the source of your debugged
program; use th&croll Bar to scroll through the file.

£2 DDD: Jusriusersistsizelleriddd/docisample.c =] B3
Fle Edit Miew Program Commands Status Source Data Help
i : [snad G TS @ 2 . A B 5 & .
Argument Field ——/min 2, H L B e e &
for (1 =h; 1 < size; i+
{ Command Tool
int v = alil; Run
for (J=1i; jo>=haalj-hl>w j—="n
abi1 =ty = _interrupt |
if (i 1=1)
i 2 Step | Stepi

H
3 while th 1= 13;

Unitil | Finish
int mainCint argc, char *argvl[l) Cont | Kl
L Up | Down

int *a;
int i; Unda | | Fedla

Is = Cint *malloc({argc — 1) * sizeof (int)); MM
for (i =0; 1 ¢ arge — 1; i+
alil = atoifarge[i + 113

shell_sort{a, argcd;
for Gi =0; i ¢arge - 1; i+ T SCI’O” Bar

printf("sd ", alil);
printf("n"l;

Al

Source Window —

freefad;

return 0;

H

DOD 3.1.3 (i586-p<—Tinux—anulibcld, by Dorothea Litkehaus and Andreas Zeller.
Capyright ® 1933 Technische Universitdt Braunschweig, Germany.
RESE;? symbols from sample...done.

Debugger Console —#

Status Line ——==Wslcoms to DDD 3.13 *Miles Ahead® (586~ pe-linux-gnulibe1) 5

Initial DDD Window

The Debugger Console (at the bottom) containspp version information as well as apB
prompt!

GNU DDD Version 3.2, by Dorothea Litkehaus and Andreas Zeller.
Copyright © 1999 Technische Universitat Braunschweig, Germany.
Copyright © 1999 Universitdt Passau, Germany.

Reading symbols from sample..done.

(gdb)

The first thing to do now is to place Breakpoint (seeSection 5.1 [Breakpoints], page)79
making sample stop at a location you are interested in. Click on the blank space left to the
initialization ofa. The Argument field ‘(): ’ now contains the locationg$ample.c:31). Now,
click on ‘Break ' to create a breakpoint at the location {i . You see a little red stop sign appear
in line 31.

! Re-invokeppp with ‘--gdb ', if you do not see a(gdb) ' prompt here (se&ection 2.1.1 [Choosing an
Inferior Debugger], page 35

Chapter 1: A Sample DDD Session 7

The next thing to do is to actualbxecute the program, such that you can examine its behavior
(seeChapter 6 [Running], page R9Select Program = Run’ to execute the program; th&un
Program ’ dialog appears.

£2 DDD: jusriusersfsisl/zelleriddd/docisample.c M= &3
Fle Edit View Program Commands Status Source Data Help |
)| 'ddd/doc/sample.c:at 4 D i @ o ?v é‘ e q‘ 2 o
* [=Lookup Fiin. dear stch prinn DisdEs POt show Aotatel ser D
gur Ci=h; i <sgize; i+9 (& x| B
mt ‘E =alil; h [W hy Run
for (3 =1; 1= &&a]— ywp i —=
alil = alj - (il 5
if O []']: 1)\ Step | Stepi
£ DDD: Run Program x| Hext | Hexti
3 while Ch 1=13;
Arguments Until | Finish
s P Cant | Kil
int main{int argc, char
£ . 87341 Up | Down
int ®a;
int i; Uneo | Ferlo
Breakpoint7>@ a = (int)ma'\'\nc((: Eill || Lt

for (i =0; 1 ¢ arg
alil = atm(arg\

shell_sort(a, arge);
Run with Arguments

for E‘n;ﬁ(;;,f arg[|snnn 2000 5000 1000 4000 Arguments

printf("n"};

. free(al;

Click here to run Run | cancel | Hew

3

return 0;

Reading sywbols from sample...done.
(gdb) break /usr/users/sts‘\/ze]]er/dddfduc/samme [
Ereakpnmt 1 at 0x8048666: file /‘usr/users/sts‘\/ze'\]er’/ddd/dnc/samp'\e c, line

(qdh) i

o e m— |

A Breakpoint 1 al 0x8048866: file /usrusersists1/zeller/ddd/doc/sample.c, line 31.

Running the Program

In ‘Run with Arguments ', you can now enter arguments for te@mple program. Enter the
arguments resulting in erroneous behavior here—tha8@)0 7000 5000 1000 4000 . Click
on ‘Run’ to start execution with the arguments you just entered.

GDB now startssample . Execution stops after a few moments as the breakpoint is reached.
This is reported in the debugger console.
(gdb) break sample.c:31
Breakpoint 1 at 0x8048666: file sample.c, line 31.
(gdb) run 8000 7000 5000 1000 4000
Starting program: sample 8000 7000 5000 1000 4000

Breakpoint 1, main (argc=6, argv=0xbffff918) at sample.c:31
(gdb)
The current execution line is indicated by a green arrow.
= a = (int *)malloc((argc - 1) * sizeof(int));
You can now examine the variable values. To examine a simple variable, you can simply move
the mouse pointer on its name and leave it there. After a second, a small window with the variable
value pops up (seBection 7.1 [Value Tips], page 1D3Try this with ‘argv ’ to see its valueg).

The local variablea’ is not yet initialized; you'll probably se®x0 or some other invalid pointer
value.

8 Debugging with DDD

To execute the current line, click on theéxt ’ button on the command tool. The arrow ad-
vances to the following line. Now, point again cad to see that the value has changed and taat *
has actually been initialized.

£t DDD: jusriusers/sisl/zelleriddd/docisample.c M= =
Fle Edit View Program Commands Status Source Data Help |
o5 9 5 o 2 o An &K o &
Lookup Finds Bre: kua(h Print Dspiay POl st poie et Ui
: Y
for (i =h; 1 < size; i+ =)
{ =2 pbb X
int v =alil; Run
ur(171]>—h&&a[1—h]>vj(h)

alil = alj - hl; Interrupt
if (1 1=)
alil

Step | Stepi
Mext | Mesti

3 while Ch t=1);
Until | Firish

j{ﬂt mainfint arge, char *argvl[l} Cont | Kl

Up | Down

int *ap
int 1; Undlo | Recio

@ a = fint *Imalloc{{argc — 1) # gizeof (int)); Edit | Make

Execution Position— it 7 nmmsssls; 1159

shell_sart(a, argcd;

i for (1 =0: 4 <arge = 1; i+
Value Tip Brintfi™sd ", a011);
printf("n"};
free(al;

return 0;

Breakpoint 1, main_ (arge=6, argv—thffffﬁWB) at
/usr/users/‘stswze'\'\er/ddd/dnc/‘samp'le <
Eg h% next

L e

A oa=(int *) 0xB049878

Viewing Values in DDD

To examine the individual values of tha’‘array, enter &[0] ’ in the argument field (you can
clear it beforehand by clicking or{): ') and then click on thePrint ' button. This prints the
current value of() ' in the debugger console (s€gction 7.2 [Printing Values], page 1)04n our
case, you'll get

(gdb) print af0]

$1 =0

(gdb)
or some other value (note thad’*has only been allocated, but the contents have not yet been
initialized).

To see all members of' at once, you must use a speci@bn operator. Sinced’ has been
allocated dynamicallyzpB does not know its size; you must specify it explicitly using tk@
operator (se€ection 7.3.2.1 [Array Slices], page)1Enter a[0]@(argc - 1) ’inthe argument
field and click on thePrint ' button. You get the firsargc - 1 elements of&’, or

(gdb) print a[0]@(argc - 1)
$2 = {0, 0, 0, O, 0}
(gdb)

Chapter 1: A Sample DDD Session 9

Rather than usingPrint ' at each stop to see the current value af, ‘you can alsodisplay
‘a’, such that its is automatically displayed. With[0]@(argc-1) ' still being shown in the
argument field, click onDisplay . The contents ofa’ are now shown in a new window, th@ata
Window. Click on ‘Rotate ’to rotate the array horizontally.

£ DDD: fusriusersistsl fzellerfdddfdocisample.c M=
Fle Edit View Program Commands Stalus Source Data ﬂelp|

O:f aln) & arsc -5 [808 B0 2 e oo @ w o Display Button

“|1:_alo] @ (arge - 1) :

Data Window—

} =Y
3 while (h t=13; S x|
Run

j‘{nt main(int arac, char *argv[l} Interrupt

int e Step | Stepi

int 1 Hext | Mexti

@ a = (int *Jmalloc((argc — 1) * sizeof(intll: Until | Finish
H for (1 =0;1 ¢arge - 1; i+ el @
ali] = atoifargw[i + 1]3;

Up | Down
Undo| Fetlo

Eciit | Make

shell_sort(a, arged;

for (1 =05 1 <arge — 15 i+
printf("sd ", alil):

printf("\n"};

Free(a);

return 0;

3

~]

§1 =10
(gdb} print al0]l @ {argc — 1)
2 =10, 0,0, 0,0

(adb) graph dispiay alo] @ (argc - 13
Cadb) |

H

A Display 1:al0] @ (arge — 1) (enabled, scope main, address 0x8049878)

Data Window

Now comes the assignment @f’s members:
= for (i = 0; i < argc - 1; i++)
ali] = atoi(argv[i + 1));
You can now click onNext ' and ‘Next ’ again to see how the individual members af are
being assigned. Changed members are highlighted.

To resume execution of the loop, use thitil ' button. This makes:DB execute the program
until a line greater than the current is reached. Click Ontil * until you end at the call of
‘shell_sort 'in

= shell_sort(a, argc);
At this point, ‘a”’s contents should be8000 7000 5000 1000 4000 . Click again on Next ’
to step over the call teshell_sort . bbD ends in
= for (i = 0; i < argc - 1; i++)
printf("%d ", ali]);
and you see that afteshell_sort " has finished, the contents ai*are ‘1000, 1913, 4000,
5000, 7000 '—that s, ‘shell_sort " has somehow garbled the contents af *

To find out what has happened, execute the program once again. This time, you do not skip
through the initialization, but jump directly into theHell_sort ’ call. Delete the old breakpoint
by selecting it and clicking orClear . Then, create a new breakpoint in line 35 before the call to
‘shell_sort . To execute the program once again, sel€bgram =- Run Again .

Once moreppD ends up before the call tahell_sort ™

10 Debugging with DDD

= shell_sort(a, argc);
This time, you want to examine closer whahell_sort ' is doing. Click on ‘Step ’ to step
into the call to shell_sort ’. This leaves your program in the first executable line, or
= int h = 1;
while the debugger console tells us the function just entered:
(gdb) step
shell_sort (a=0x8049878, size=6) at sample.c:9
(gdb)

This output that shows the function wheigample ' is now suspended (and its arguments)
is called astack frame display. It shows a summary of the stack. You can uSgatus =
Backtrace 'to see where you are in the stack as a whole; selecting a line (or clickingmmahnd
‘Down) will let you move through the stack. Note how th&' display disappears when its frame
is left.

£& DDD: fusriusersisisi/zelleriddd/docisample.c [_[O]
Fle Edit View Program Commands Sialus Source Data ﬂelp|

03[-/dddsdocssample.c:g |0 © BT @T G0t 2T A Lt ST G0 R
oD i O mi i b e b miem B dn

e
> JUARIRESN < 00D: Backirace x] S

Interrupt
Backirace

#2 0x80484be in
#1 0x80486ed

p et
while = -
do ort_dummy__ (3 B ||)
at sample.c:35 et | Mewsti

At Uil | Finish

Cont | Kil
[t | e
=0)

}
; } while (h 1=

w{nt main(int argc,

Up Dovn Close Help |

int *a;
int 1

Jusrfusers/sts1/zeller/ddd/doc/sample. c:35
(qdb) down

#0 shell_sort (a=0x3049878, size=6) at
é’u;gg’users/sts‘\/ze'l'lerfddd/duc/samu'\e.c:ﬂ
i

0

A Updating displays. done

The DDD Backtrace

Let us now check whetheshell_sort s arguments are correct. After returning to the lowest
frame, entera[0]@size ' in the argument field and click orPrint ’:
(gdb) print a[0] @ size
$4 = {8000, 7000, 5000, 1000, 4000, 1913}
(gdb)
Surprise! Where does this additional vall&l3 come from? The answer is simple: The array
size as passed irsize ’'to ‘shell sort ' is too large by one-1913 is a bogus value which
happens to reside in memory after.' And this last value is being sorted in as well.

To see whether this is actually the problem cause, you can now assign the correct wsilzee to ‘
(seeSection 7.3.3 [Assignment], page)1Belect size ’in the source code and click osét '
A dialog pops up where you can edit the variable value.

Chapter 1: A Sample DDD Session 11

£ DDD: fusriusersists] fzellerfdddfdocisample.c [_ O]
Fle Edit View Program Commands Stalus Source Data Help |
o] gz G i T @ y T oA o M -
0t sizd IS a2 i B 2 0 SetButton
. . = [
Select variable in the source ST Y070 SHeTT_SOrEUTt 31T, TnE SER)
Run
int 1, i [
& int h=1; Interrupt
do {h ko3 £2 DDD: Set Value Step | Stepi
=
énwlgﬂe th Set value of =ize Hext | Mexi
hoi= 3 Unil | Finish
. % |~5 7
Edit value ° € ML = Cont| kil
me s e
at ok | | apply Cancel Help | |Undo] e
if C;[Ecit | bioke |
¥ while Ch 1=13;
}nt main(int argc, char *argw[])
int *a;
s
#0 shell_sort (a=0x8043878, size=6) at [~
Jusrfusers/stsifzeller/ddd/doc/sample. c:3
(gdb) print a[0] @ sizé
%4 = {8000, 7000, 5000, 1000, 4000, 13133
(gdb} =
/
A $4 = {8000, 7000, 5000, 1000, 4000, 1913} -':

Setting a Value

Change the value okize ’to 5 and click on OK. Then, click on Finish ’to resume execu-
tion of the ‘shell_sort '’ function:

(gdb) set variable size = 5

(gdb) finish
Run till exit from #0

shell_sort (a=0x8049878, size=5) at sample.c:9

0x80486ed in main (argc=6, argv=0xbffffo18) at sample.c:35

(gdb)

12 Debugging with DDD

Success! Thed’ display now contains the correct values000, 4000, 5000, 7000,
8000".

£1 DDD: Jusriusersistsl/zellerfddd/dddisample.c [_[DIx]

Fle Edit View Program Commands S[ams Source Data ﬂelpl

= P Ea =
():| size X G 7 é VS Q N @ =
Lo k up F i B Rk Usten Prnt Dispiay Pt (0f Foite sat Uidep

: al0] @ (arge - 1) c
Changed values —t~ mnn|4nnn|snnn|7nnn\annn

P I o
gnr (i =h 1 <size; i+ =IDDD ES
int v =alil; Run
for (3 =1;]>—h&&a[j*h]>v]‘=h)
aljl = alj - hl; Interrupt
if Oa[]’]_ E)v step | stepi
H Hext | Mexti
} while ch =1}

Undtil | Finish
int main{int argc, char *argvll) (G| |_Ca
L Up | Down

int *a;
int i; Unelo | Feclo

a = (int)maﬂuc((arqc = 1) * sizeof(int)); @M
for (i =0; 1 < arge — 1; i++)

alil = atoifargv[i + 113
B shell_sortla, arged;

for (i =10; 1 <argg — 1; i+)
printf{"sd *, alil);

Run ti11 exit from #0 shell_sort (a—UxEUHSUU size=5) at [~
/usr/usars/‘stsﬂzelWer/ddd/dddf‘sample <
0x804872d in main (ar argy= Uxbfffstc) at
/usr/ufar’s/‘sts1/zelWer/ddd/dddf‘sample L
(gd

7
A Updating displays._dane. ‘F

Changed Values after Setting

You can verify that these values are actually printed to standard output by further executing the
program. Click onCont ’ to continue execution.

(gdb) cont
1000 4000 5000 7000 8000

Program exited normally.
(gdb)
The messageProgram exited normally. "is from GDB; it indicates that thesample
program has finished executing.

Having found the problem cause, you can now fix the source code. Clickdih ° to edit
‘sample.c ’, and change the line

shell_sort(a, argc);
to the correct invocation
shell_sort(a, argc - 1);
You can now recompilsample
$ gcc -g -0 sample sample.c
and verify (via Program = Run Again ') that sample works fine now.

(gdb) run

‘sample’ has changed; re-reading symbols.

Reading in symbols..done.

Starting program: sample 8000 7000 5000 1000 4000
1000 4000 5000 7000 8000

Chapter 1: A Sample DDD Session

Program exited normally.
(gdb)
All is done; the program works fine now. You can end thisb session with Program =
Exit "or Ctrl +Q

13

14

1.1 Sample Program

Here’s the sourcesample.c ' of the sample program.

Debugging with DDD

/* sample.c -- Sample C program to be debugged with
*/

#include <stdio.h>
#include <stdlib.h>

static void shell_sort(int a[], int size)

L
int i, j;
int h = 1;
do {
h=h*3+ 1;
} while (h <= size);
do {
h /= 3;
for (i = h; i < size; i++)
{
int v = alil;
for =1;) > h && afj - h] > v; | -=
afj] = afj - hJ;
if (i !=1])
afi] = v,
}
} while (h = 1);
}
int main(int argc, char *argvl[])
{
int *a;
int i

a = (int *)malloc((argc - 1) * sizeof(int));
for (i = 0; i < argc - 1; i++)
ali] = atoi(argv[i + 1));

shell_sort(a, argc);

for i = 0; i < argc - 1; i++)
printf("%d ", alil);

printf("\n");

free(a);
return O;

h)

DDD

Chapter 2: Getting In and Out of DDD 15

2 Getting In and Out of DDD

This chapter discusses how to startb, and how to get out of it. The essentials are:
e Type ‘ddd’ to startppp (seeSection 2.1 [Invoking], page)5
e Use File = Exit 'or Ctrl +Qto exit (seeSection 2.2 [Quitting], page 3.7

2.1 Invoking DDD

Normally, you can rumbpD by invoking the progranddd.

You can also rumbDD with a variety of arguments and options, to specify more of your debug-
ging environment at the outset.

The most usual way to stapbp is with one argument, specifying an executable program:
ddd program

If you useGDB, DBX, Ladebug, orxpB as inferior debuggers, you can also start with both an
executable program and a core file specified:

ddd program core

You can, instead, specify a process ID as a second argument, if you want to debug a running
process:

ddd program 1234

would attaclppp to procesd.234 (unless you also have a file namd@34’; bbb does check for
a core file first).

You can further contrabbpp by invoking it with specificoptions. To get a list ofbDD options,
invokeDpDD as

ddd --help

Most important are the options to specify the inferior debugger $se¢on 2.1.1 [Choosing an
Inferior Debugger], page)5but you can also customize several aspectsmab upon invocation
(seeSection 2.1.2 [Options], page L6

DDD also understands the usual X options such-display ' or ‘-geometry '. SeeSec-
tion 2.1.3 [X Options], page 24or details.

All arguments and options that are not understoodby are passed to the inferior debug-
ger; SeeSection 2.1.4 [Inferior Debugger Options], page for a survey. To pass an option to
the inferior debugger that conflicts with an X option, or wittbap option listed here, use the
‘--debugger ’option (seeSection 2.1.2 [Options], page L6

2.1.1 Choosing an Inferior Debugger

The most frequently required options are those to choose a specific inferior debugger.
Normally, the inferior debugger is determined by the program to analyze:

e If the program requires a specific interpreter, such as Java, Python, or Perl, then you should use
aJDB, PYDB, or Perl inferior debugger.

Use
ddd --jdb program
ddd --pydb program

16 Debugging with DDD

ddd --perl program
to runDpDD With JDB, PYDB, or Perl as inferior debugger.
e Ifthe program is an executable binary, you shouldass, bBx, Ladebug, oxDB. In general,
GDB provides the most functionality of these three debuggers.
Use
ddd --gdb program
ddd --dbx program
ddd --ladebug program
ddd --xdb program
to runpDD with GDB, DBX, Ladebug, oxDB as inferior debugger.

If you invoke DD without any of these options, but givepeogram to analyze, thempp will
automatically determine the inferior debugger:

e If program is a Python program, a Perl script, or a Java class) will invoke the appropriate
debugger.

e If program is an executable binarppp will invoke its default debugger for executables (usu-
ally GpB).

SeeSection 2.5 [Customizing Debugger Interaction], pagef@Bmore details on determining
the inferior debugger.

2.1.2 DDD Options

You can further control howDD starts up using the following options. All options may be
abbreviated, as long as they are unambiguous; single dashastead of double dashes ‘'’ may
also be used. Almost all options control a spedifiep resource or resource class (S&tion 3.6
[Customizing], page 58

‘--attach-windows '
Attach the source and data windows to the debugger console, creating one single big
pDD window. This is the default setting.

Giving this option is equivalent to setting theD ‘Separate ’ resource class to
‘off . SeeSection 3.6.4.2 [Window Layout], page @8r details.

‘--attach-source-window
Attach only the source window to the debugger console.

Giving this option is equivalent to setting theD ‘separateSourceWindow ’
resource tooff '. SeeSection 3.6.4.2 [Window Layout], page &8r details.

‘--attach-data-window
Attach only the source window to the debugger console.
Giving this option is equivalent to setting theoD ‘separateDataWindow
source to Off . SeeSection 3.6.4.2 [Window Layout], page &8r details.

re-

‘--automatic-debugger
Determine the inferior debugger automatically from the given arguments.
Giving this option is equivalent to setting theoD ‘autoDebugger ' resource to
‘on’. SeeSection 2.5 [Customizing Debugger Interaction], pagef@Bdetails.

Chapter 2: Getting In and Out of DDD 17

‘--button-tips
Enable button tips.
Giving this option is equivalent to setting theD ‘buttonTips ' resource toon’.
SeeSection 3.6.2 [Customizing Help], page,36r details.

‘--configuration
Print theppD configuration settings on standard output and exit.

Giving this option is equivalent to setting thep ‘showConfiguration 'resource
to ‘on’. SeeSection B.5 [Diagnostics], page Ldor details.

‘--check-configuration
Check theppp environment (in particular, the X configuration), report any possible
problem causes and exit.

Giving this option is equivalent to setting theoD ‘checkConfiguration
source toon’. SeeSection B.5 [Diagnostics], page 1,d6r details.

re-

‘--data-window
Open the data window upon start-up.

Giving this option is equivalent to setting thaD ‘openDataWindow ’ resource to
‘on’. SeeSection 3.6.4.4 [Toggling Windows], page,d6r details.

‘--dbx ' RunDBX as inferior debugger.

Giving this option is equivalent to setting tleD ‘debugger ' resource to dbx'.
SeeSection 2.5 [Customizing Debugger Interaction], pagef@Bdetails.

‘--debugger name’
Invoke the inferior debuggerame. This is useful if you have several debugger versions
around, or if the inferior debugger cannot be invoked under its usual namegdbe.
dbx, xdb, jdb , pydb, orperl).
This option can also be used to pass options to the inferior debugger that would oth-
erwise conflict withpbD options. For instance, to pass the optieth ‘directory’ to
XDB, US€:

ddd --debugger "xdb -d directory"

If you use the ‘-debugger ' option, be sure that the type of inferior debugger
is specified as well. That is, use one of the optiongdb ’, ‘--dbx ', ‘--xdb ",
‘--jdb ', *--pydb ’, or ‘--perl ' (unless the default setting works fine).

Giving this option is equivalent to setting teD ‘debuggerCommand’ resource
to name. SeeSection 2.5 [Customizing Debugger Interaction], pagef@Bdetails.

‘--debugger-console
Open the debugger console upon start-up.

Giving this option is equivalent to setting tmeD ‘openDebuggerConsole ' re-

source toon’. SeeSection 3.6.4.4 [Toggling Windows], page,6r details.
‘--disassemble '

Disassemble the source code. See also-the-disassemble " option, below.

Giving this option is equivalent to setting tb®p ‘disassemble ’resource toon’.
SeeSection 4.4 [Customizing Source], page ¥ details.

18

‘--exec-window

Debugging with DDD

Run the debugged program in a specially created execution window. This is useful
for programs that have special terminal requirements not provided by the debugger
window, as raw keyboard processing or terminal control sequencesSesgen 6.2
[Using the Execution Window], page 9for details.

Giving this option is equivalent to setting tlepp ‘separateExecWindow ' re-

source toon’. SeeSection 6.2.1 [Customizing the Execution Window], pagefép
details.

‘--font fontname’
‘-fn fontname’

‘--fonts

‘--fontsize

‘--fullname
l_f)

‘__gdb i)

‘--glyphs

‘--help ’
l_h 1
l_? 1

Usefontname as default font.

Giving this option is equivalent to setting thepp ‘defaultFont resource to
‘fonthame . SeeSection 3.6.4.3 [Customizing Fonts], page fof details.

Show the font definitions used lmypp on standard output.
Giving this option is equivalent to setting tleD ‘showFonts ' resource to 6n’.
SeeSection B.5 [Diagnostics], page 1,d6r details.

size’
Set the default font size taze (in 1/10 points). To makepb use 12-point fonts, say
‘--fontsize 120 ",
Giving this option is equivalent to setting theoD ‘FontSize ' resource class to
‘size . SeeSection 3.6.4.3 [Customizing Fonts], page ff details.

Enable therTy interface, taking additional debugger commands from standard input
and forwarding debugger output on standard output. Current positions are issued in
aDB ‘-fullname ’ format suitable for debugger front-ends. By default, both the
debugger console and source window are disabled. S8egon 10.2 [TTY mode],

page 145for a discussion.

Giving this option is equivalent to setting thep ‘TTYModé€ resource class tan'.
SeeSection 10.2 [TTY mode], page 14for details.
Run ¢pB as inferior debugger.

Giving this option is equivalent to setting tlaD ‘debugger ' resource to gdb’.
SeeSection 2.5 [Customizing Debugger Interaction], pagef@Bdetails.

Display the current execution position and breakpoints as glyphs. See also the
‘--no-glyphs ' option, below.

Giving this option is equivalent to setting tleD ‘displayGlyphs ' resource to

‘on’. SeeSection 4.4 [Customizing Source], page ¥ details.

Give a list of frequently used options. Show options of the inferior debugger as well.

Giving this option is equivalent to setting thaD ‘showlnvocation '’ resource to
‘on’. SeeSection B.5 [Diagnostics], page 1,d0r details.

Chapter 2: Getting In and Out of DDD 19

‘--host hostname’

‘--host username @hostname’
Invoke the inferior debugger directly on the remote hlositname. If username is
given and the--login ' option is not used, usesername as remote user name. See
Section 2.4.2 [Remote Debugger], page fét details.

Giving this option is equivalent to setting theoD ‘debuggerHost ' resource to
hostname. SeeSection 2.4.2 [Remote Debugger], page fét details.

‘-sjdb ’ RunJDB as inferior debugger.

Giving this option is equivalent to setting tleD ‘debugger ’ resource to gdb’.
SeeSection 2.5 [Customizing Debugger Interaction], pagef@Bdetails.

‘--ladebug
Run Ladebug as inferior debugger.

Giving this option is equivalent to setting thepp ‘debugger ' resource to
‘ladebug . See Section 2.5 [Customizing Debugger Interaction], page &

details.
‘--lesstif-hacks '
Equivalent to *-lesstif-version 999 '. Deprecated.
Giving this option is equivalent to setting theD ‘lessTifVersion ' resource to

999. SeeSection C.7 [LessTif], page 17for details.

‘--lesstif-version version’
Enable some hacks to makep run properly with LessTif. SeBection C.7 [LessTif],
page 172for a discussion.

Giving this option is equivalent to setting thab ‘lessTifVersion ' resource to
version. SeeSection C.7 [LessTif], page 17for details.

‘--license
Print thepDD license on standard output and exit.

Giving this option is equivalent to setting tlaD ‘showLicense ' resource toon.
SeeSection B.5 [Diagnostics], page 166r details.

‘--login username’

‘-| username’
Useusername as remote user name. S8ection 2.4.2 [Remote Debugger], pagg 31
for detalils.

Giving this option is equivalent to setting th®D ‘debuggerHostLogin ' resource
to username. SeeSection 2.4.2 [Remote Debugger], page fér details.

‘--maintenance
Enable the top-levelMaintenance ' menu with options for debuggingpp. See
Section 3.1.9 [Maintenance Menu], page ff details.

Giving this option is equivalent to setting tlD ‘maintenance ' resource toon.
SeeSection 3.1.9 [Maintenance Menu], page #f details.

‘--manual
Print theppD manual on standard output and exit.

20 Debugging with DDD

Giving this option is equivalent to setting tlop ‘showManual ’ resource toon.
SeeSection B.5 [Diagnostics], page 166r details.

‘--news ' Print thepDdD news on standard output and exit.

Giving this option is equivalent to setting teD ‘showNews’ resource toon. See
Section B.5 [Diagnostics], page 1d6r details.

‘--no-button-tips
Disable button tips.
Giving this option is equivalent to setting tb®D ‘buttonTips ' resource to off
SeeSection 3.6.2 [Customizing Help], page,36r details.

‘--no-data-window
Do not open the data window upon start-up.

Giving this option is equivalent to setting thabD ‘openDataWindow ’ resource to
‘off . SeeSection 3.6.4.4 [Toggling Windows], page,d6r details.

‘--no-debugger-console
Do not open the debugger console upon start-up.

Giving this option is equivalent to setting tmeD ‘openDebuggerConsole
source to 6ff '. SeeSection 3.6.4.4 [Toggling Windows], page,@6r details.

re-

‘--no-disassemble
Do not disassemble the source code.

Giving this option is equivalent to setting thebp ‘disassemble
‘off '. SeeSection 4.4 [Customizing Source], page far details.

resource to

‘--no-exec-window
Do not run the debugged program in a specially created execution window; use the
debugger console instead. Useful for programs that have little terminal input/output,
or for remote debugging. Séection 6.2 [Using the Execution Window], page for
details.

Giving this option is equivalent to setting tlD ‘separateExecWindow ' re-
source tooff ’. SeeSection 6.2.1 [Customizing the Execution Window], paggfée
details.

‘--no-glyphs
Do not use glyphs; display the current execution position and breakpoints as text char-
acters.

Giving this option is equivalent to setting tlep ‘displayGlyphs ' resource to
‘off '. SeeSection 4.4 [Customizing Source], page & details.

‘--no-lesstif-hacks
Equivalent to :-lesstif-version 1000 ". Deprecated.

Giving this option is equivalent to setting theD ‘lessTifVersion " resource to
1000. SeeSection C.7 [LessTif], page 17for details.

‘--no-maintenance
Do not enable the top-leveMaintenance ' menu with options for debuggingpp.
This is the default. SeBection 3.1.9 [Maintenance Menu], page for details.

Chapter 2:

‘--no-source-window

‘--no-value-tips

¢ -NnwW ’

‘--perl

‘--pydb

‘--panned-graph-editor

‘--play-log

Getting In and Out of DDD 21

Giving this option is equivalent to setting tlaD ‘maintenance ' resource tooff.
SeeSection 3.1.9 [Maintenance Menu], page #f details.

Do not open the source window upon start-up.

Giving this option is equivalent to setting theD ‘openSourceWindow ' resource
to ‘off '. SeeSection 3.6.4.4 [Toggling Windows], page,@6r details.

Disable value tips.

Giving this option is equivalent to setting thD ‘valueTips '’ resource to Off .
SeeSection 7.1 [Value Tips], page 10for details.

Do not use the X window interface. Start the inferior debugger on the local host.

Run Perl as inferior debugger.

Giving this option is equivalent to setting thaD ‘debugger ' resource to perl
SeeSection 2.5 [Customizing Debugger Interaction], pagef@3details.

Run pYDB as inferior debugger.

Giving this option is equivalent to setting theD ‘debugger ' resource to pydb .
SeeSection 2.5 [Customizing Debugger Interaction], pagef@Bdetails.

Use an Athena panner to scroll the data window. Most people prefer panners on
scroll bars, since panners allow two-dimensional scrolling. However, the panner is
off by default, since some Motif implementations do not work well with Athena wid-
gets. SeeSection 7.3.1.12 [Customizing Displays], page ,1for details; see also
‘--scrolled-graph-editor ', below.

Giving this option is equivalent to setting tbeD ‘pannedGraphEditor 'resource

to ‘on’. SeeSection 7.3.1.12 [Customizing Displays], page 1fof details.

log-file’
Recapitulate a previouspp session.
ddd --play-log log-file
invokesppD as inferior debugger, simulating the inferior debugger givelojnfile
(see below). This is useful for debuggingp.

Giving this option is equivalent to setting thabD ‘playLog ’resource tobn’. See
Section 2.5 [Customizing Debugger Interaction], pagef@Bdetails.

‘--PLAY log-file’

‘--rhost
‘--rhost

Simulate an inferior debuggetiog-file is a ‘SHOME/.ddd/log ' file as generated
by some previou®pD session (se&ection B.5.1 [Logging], page 1k6 When a
command is entered, scawg-file for this command and re-issue the logged reply; if
the command is not found, do nothing. This is used by th@dy ’ option.

hostname’

username @hostname’
Run the inferior debugger interactively on the remote tostname. If username is
given and the--login ’ option is not used, usesername as remote user name. See
Section 2.4.2 [Remote Debugger], page fat details.

22 Debugging with DDD

Giving this option is equivalent to setting teD ‘debuggerRHost ' resource to
hostname. SeeSection 2.4.2 [Remote Debugger], page fét details.

‘--scrolled-graph-editor
Use Motif scroll bars to scroll the data window. This is the default in nmsb
configurations. Se&ection 7.3.1.12 [Customizing Displays], page ,1fot details;
see also--panned-graph-editor ', above.

Giving this option is equivalent to setting tb®p ‘pannedGraphEditor ' resource
to ‘off . SeeSection 7.3.1.12 [Customizing Displays], page fof details.

‘--separate-windows

‘--separate '’
Separate the console, source and data windows. See alsoedtiach ' options,
above.

Giving this option is equivalent to setting thepD ‘Separate ' resource class to
‘off . SeeSection 3.6.4.2 [Window Layout], page @8r details.

‘--session session’
Load session upon start-up. Seé&ection 2.3.2 [Resuming Sessions|, page fo®
details.

Giving this option is equivalent to setting tleoD ‘session ' resource tosession.
SeeSection 2.3.2 [Resuming Sessions], pagef@@details.

‘--source-window
Open the source window upon start-up.

Giving this option is equivalent to setting theD ‘openSourceWindow ' resource
to ‘on’. SeeSection 3.6.4.4 [Toggling Windows], page,§6r details.

‘--status-at-bottom
Place the status line at the bottom of the source window.

Giving this option is equivalent to setting thabD ‘statusAtBottom '’ resource to
‘on’. SeeSection 3.6.4.2 [Window Layout], page d@r details.

‘--status-at-top ’
Place the status line at the top of the source window.

Giving this option is equivalent to setting thaD *‘statusAtBottom ’ resource to
‘off '. SeeSection 3.6.4.2 [Window Layout], page @8r details.

‘--sync-debugger

Do not process X events while the debugger is busy. This may result in slightly better

performance on single-processor systems.

Giving this option is equivalent to setting tlmeD ‘synchronousDebugger ' re-
source to 6n’. See Section 2.5 [Customizing Debugger Interaction], page f88
details.

‘--toolbars-at-bottom
Place the toolbars at the bottom of the respective window.

Giving this option is equivalent to setting th@D ‘toolbarsAtBottom ' resource
to ‘on’. SeeSection 3.6.4.2 [Window Layout], page d8r details.

Chapter 2: Getting In and Out of DDD 23

‘--toolbars-at-top
Place the toolbars at the top of the respective window.

Giving this option is equivalent to setting th@D ‘toolbarsAtBottom ' resource
to ‘off . SeeSection 3.6.4.2 [Window Layout], page &®r details.

‘--trace
Show the interaction betweemp and the inferior debugger on standard error. This is
useful for debuggingpp. If ‘--trace ' is not specified, this information is written
into ‘~/.ddd/log '’ (‘ ~’ stands for your home directory), such that you can also do
a post-mortem debugging. S&ection B.5.1 [Logging], page 16for details about
logging.

Giving this option is equivalent to setting theD ‘trace ’resource toon. SeeSec-
tion B.5 [Diagnostics], page 166or details.

1 EnableTTY interface, taking additional debugger commands from standard input and
forwarding debugger output on standard output. Current positions are issued in a for-
mat readable for humans. By default, the debugger console is disabled.

Giving this option is equivalent to setting theD ‘ttyMode ’ resource toon’. See
Section 10.2 [TTY mode], page 14for details.

‘--value-tips
Enable value tips.

Giving this option is equivalent to setting tleD ‘valueTips ' resource to 6n’.
SeeSection 7.1 [Value Tips], page 10for details.

‘--version

-v Print theppD version on standard output and exit.
Giving this option is equivalent to setting tb®p ‘showVersion ’resource toon'’.

SeeSection B.5 [Diagnostics], page 166r details.

‘--vsl-library library’
Load thevsL library library instead of using thepp built-in library. This is useful
for customizing display shapes and fonts.

Giving this option is equivalent to setting tb®D ‘vslLibrary ' resource tdibrary.

SeeSection 7.3.7.3 [Customizing Display Appearance], page fiit details.
‘--vsl-path path’

SearchvsL libraries inpath (a colon-separated directory list).

Giving this option is equivalent to setting theD ‘vsIPath ’ resource tgpath. See
Section 7.3.7.3 [Customizing Display Appearance], page fit tetails.

‘--vsl-help ’
Show a list of further options controlling thesL interpreter. These options are in-
tended for debugging purposes and are subject to change without further notice.
‘--xdb ’* RunxDB as inferior debugger.

Giving this option is equivalent to setting tleD ‘debugger ' resource to xdb .
SeeSection 2.5 [Customizing Debugger Interaction], pagef@Bdetails.

24 Debugging with DDD

2.1.3 X Options

DDD also understands the following X options. Note that these options only take a single dash

‘-display display’
Use the X servedisplay. By default,display is taken from thédISPLAY environment
variable.

‘-geometry geometry’
Specify the initial size and location of the debugger console.

‘-iconic
Startppp iconified.
‘-name name’
Give DDD the nameiame.
‘-selectionTimeout timeout’
Specify the timeout in milliseconds within which two communicating applications
must respond to one another for a selection request.
‘-title name’

Give theppp window the titlename.

‘-Xrm resourcestring’
Specify a resource name and value to override any defaults.

2.1.4 Inferior Debugger Options

All options thatpbpb does not recognize are passed to the inferior debugger. This section lists
the most useful options of the different inferior debuggers supportetbloy

2.1.4.1 GDB Options

ThesecDB options are useful when usingpp with DB as inferior debugger. Single dashes
‘- "instead of double dashes ‘'’ may also be used.

‘-b baudrate’
Set serial port baud rate used for remote debugging.

‘--cd dir’ Change current directory tdir.

‘--command file’
ExecutecDB commands fronfile.

‘--core corefile’
Analyze the core dumgporefile.
‘--directory dir’
‘-d dir’ Add directory to the path to search for source files.

‘--exec execfile’
Useexecfile as the executable.

Chapter 2: Getting In and Out of DDD 25

‘--mapped ’
Use mapped symbol files if supported on this system.

‘n’ Do not read :gdbinit ’file.

Fully read symbol files on first access.

‘--readnow

‘--se file’
Usefile as symbol file and executable file.

‘--symbols symlfile’
Read symbols fromymfile.

Seesection “Invoking GDB” inDebugging with GDB, for further options that can be used with
GDB.

2.1.4.2 DBX and Ladebug Options

DBX variants differ widely in their options, so we cannot give a list here. Check outtthd)
andladebug(1) manual pages.

2.1.4.3 XDB Options

ThesexDB options are useful when usimgp with XDB as inferior debugger.

‘-d dir’ Specify dir as an alternate directory where source files are located.

‘-P process-id’
Specify the process ID of an existing process the user wants to debug.

‘| library’
Pre-load information about the shared librdiyrary. ‘-| ALL ' means always pre-
load shared library information.

‘S num’ Set the size of the string cache tam bytes (default is 1024, which is also the mini-
mum).

‘s’ Enable debugging of shared libraries.

Further options can be found in tlkdb(1) manual page.

2.1.4.4 JDB Options

The following JbB options are useful when usimpp with JpB as inferior debugger.

‘-host hostname’
host machine of interpreter to attach to

‘-password psswd’
password of interpreter to attach to (frordébug)

TheseipB options are forwarded to debuggee process:

26 Debugging with DDD

‘-verbose
‘v

Turn on verbose mode.

‘-debug ° Enable remote Java debugging,

‘-noasyncgc
Don't allow asynchronous garbage collection.

‘-verbosegc
Print a message when garbage collection occurs.

‘-noclassgc
Disable class garbage collection.

‘-checksource
‘-cs Check if source is newer when loading classes.

‘-ss number’
Set the maximum native stack size for any thread.

‘-0SS number’
Set the maximum Java stack size for any thread.

‘-ms number’
Set the initial Java heap size.

‘-mx number’
Set the maximum Java heap size.

‘-D name=value’
Set the system properhame to value.

‘-classpath path’
List directories in which to look for classepath is a list of directories separated by
colons.

‘-prof
‘-prof. file’
Output profiling data to.fjava.prof " If file is given, write the data ta/ file’.

‘-verify ’
Verify all classes when read in.

‘-verifyremote '
Verify classes read in over the network (default).

‘-noverify "’
Do not verify any class.

‘-dbgtrace ’
Print info for debuggingDB.

Further options can be found in theB documentation.

2.1.4.5 PYDB Options

For a list of usefubyDB options, check out theyps documentation.

Chapter 2: Getting In and Out of DDD 27

2.1.4.6 Perl Options

The most important Perl option to use witlop is *-w’; it enables several important warnings.
For further options, see therlrun(1) manual page.

2.1.5 Multiple DDD Instances

If you have multipleppD instances running, they share common preferences and history files.
This means that changes applied to one instance may get lost when being overwritten by the other in-
stanceDDD has two means to protect you against unwanted losses. The first means is an automatic
reloading of changed options, controlled by the following resource$se&on 3.6 [Customizing],

page 5§

checkOptions (class CheckOptions) Resource
Everyn seconds, where is the value of this resourcepp checks whether the options file
has changed. Default 80, which means that every 30 secondsp checks for the options
file. Setting this resource @ disables checking for changed option files.

Normally, automatic reloading of options should already suffice. If you need stronger protection,
DDD also provides a warning against multiple instances. This warning is disabled by default, If you
want to be warned about multipiebp invocations sharing the same preferences and history files,
enable Edit = Preferences = Warn if Multiple DDD Instances are Running ’

This setting is tied to the following resource (seection 3.6 [Customizing], page p8

warnlfLocked (class WarnlfLocked) Resource
Whether to warn if multipleoDD instances are runninggh’) or not (‘off ’, default).

2.1.6 X warnings

If you are bothered by X warnings, you can suppress them by seEuhg * = Preferences
= General = Suppress X warnings '’

This setting is tied to the following resource (seection 3.6 [Customizing], page 8

suppressWarnings (class SuppressWarnings) Resource
If ‘on’, X warnings are suppressed. This is sometimes useful for executables that were built
on a machine with a different X or Motif configuration. By default, thisaf * .

2.2 Quitting DDD

To exit DD, select File = Exit '. You may also type theguit command at the debugger
prompt or pressCirT+Q). GDB andxXDB also accept theg command or an end-of-file character
(usually CtrT+D)). Closing the lasbpp window will also exitppD.

An interrupt (ESC or ‘Interrupt ') does not exit frompDD, but rather terminates the action
of any debugger command that is in progress and returns to the debugger command level. It is safe
to type the interrupt character at any time because the debugger does not allow it to take effect until
atime when it is safe.

28 Debugging with DDD

In case an ordinary interrupt does not succeed, you can also use ank@bieit) or ‘Abort),
which sends &IGABRT signal to the inferior debugger. Use this in emergencies only; the inferior
debugger may be left inconsistent or even exit aftSt@ABRT signal.

As a last resort (ibpp hangs, for example), you may also interropto itself using an interrupt
signal SIGINT). This can be done by typing the interrupt character (usy@tiy+rC)) in the shell
DDD was started from, or by using thexix ‘kill ’ command. An interrupt signal interrupts any
DDD action; the inferior debugger is interrupted as well. Since this interrupt signal can result in
internal inconsistencies, use this as a last resort in emergencies only; save your work as soon as
possible and restartpp.

2.3 Persistent Sessions

If you want to interrupt your currerntbD session, you can save the entire the eniib® state
assession on disk and resume later.

2.3.1 Saving Sessions

To save a session, seleflile = Save Session As
sSession nameession.

. You will be asked for a symbolic

If your program is running (se€hapter 6 [Running], page %%r if you have opened a core
file (seeSection 4.2.2 [Opening Core Dumps], pagg, #pp can also include a core file in the
session such that the debuggee data will be restored when re-opening it. To get a comfile,
typically mustkill the debuggee. This means that you cannot resume program execution after
saving a session. Depending on your architecture, other options for getting a core file may also be
available.

Including a core dump is necessary for restoring memory contents and the current execution
position. To include a core dump, enablieclude Core Dump '’

£ DDD: Save Session

Sessions
Default session ——————+{nonel
carmands
ctest+dbx
ctest

Saved sessions ——— | RS

Set to save
Program Data — " Include Core Dump via ' Killing the Debuggee ~ |

Save Session

I cuntest

Click to save —m Delete Cancel Help

Saving a Session

Chapter 2: Getting In and Out of DDD 29

After clicking on ‘Save’, the session is saved ir/f.ddd/sessions/ session’.
Here's a list of the items whose state is saved in a session:

e The state of the debugged program, as a coré file.

e All breakpoints and watchpoints (s@€#apter 5 [Stopping], page Y.9

e All signal settings (se&ection 6.10 [Signals], page 100

e Alldisplays (seesection 7.3 [Displaying Values], page)&

e All DDD options (seé&ection 3.6.1.3 [Saving Options], page 59

e All debugger settings (se€gection 3.6.5 [Debugger Settings], pagg.68

e All user-defined buttons (s€&=ction 10.4 [Defining Buttons], page)47

e All user-defined commands (s€ection 10.5 [Defining Commands], page .50
e The positions and sizes oD windows.

e The command history (se&ection 10.1.2 [Command History], page)44

After saving the current state as a session, the session bea@omes This means thabpp
state will be saved as session defaults:

e User options will be saved in ~/.ddd/sessions/ sessionf/init ’ instead of
‘~/.ddd/init '. SeeSection 3.6.1.3 [Saving Options], page ¥& details.

e TheDpDD command history will be saved ir-/.ddd/sessions/ session/history '’ in-
stead of ~/.ddd/history ". SeeSection 10.1.2 [Command History], page 12t details.

To make the current session inactive, open dieéault sessiomamed [None] '. See Sec-
tion 2.3.2 [Resuming Sessions], page fo¥ details on opening sessions.

2.3.2 Resuming Sessions

To resume a previously saved session, seleitd * = Open Session ' and choose a session
name from the list. After clicking onOpen’, the entireppD state will be restored from the given
session.

The session namefNone] ' is the default session which is active when startingpp. To save
options for default sessions, open the default session and save optiorizSee 3.6.1.3 [Saving
Options], page 59or detalils.

L Only if a core file is included.

2 If a core file isnot to be included in the sessionpp data displays are saved dsferred that is, they
will be restored as soon as program execution reaches the scope in which they were creatzzt:- See
tion 7.3.1.1 [Creating Single Displays], page 1fi¥ details.

30 Debugging with DDD

£2 DDD: Open Session [5<]
Sessions
Default session fnonel
carmands45

ctast+dby
ctest

Saved sessions kugo

Open Session

I cuxtes

Click to open Open | Delete Cancel Help

Opening a Session

If a the restored session includes a core dump, the program being debugged will be in the same
state at the time the session was saved; in particular, you can examine the program data. However,
you will not be able to resume program execution since the process and its environment (open
files, resources, etc.) no longer exist. However, you can restart the program, re-using the restored
breakpoints and data displays.

Opening sessions also restores command definitions, buttons, display shortcuts and the source
tab width. This way, you can maintain a different set of definitions for each session.

You can also specify a session to open when stariimg. To invokeDDD with a sessioRession,
use

ddd --session session

There is also a shortcut that opens the sessiesion and invokes the inferior debugger on an
executable namegbssion (in casesession cannot be opened):

ddd =session

There is no need to give further command-line options when restarting a session, as they will be
overridden by the options saved in the session.

You can also use an X session manager suotsasto save and restomrepp sessions. When
being shut down by a session managerp saves its state under the name specified by the session
manager; resuming the X session make® reload its saved state.

2.3.3 Deleting Sessions

To delete sessions that are no longer needed, sélget ‘= Open Session ’or ‘File =
Save Session . Select the sessions you want to delete and clickxeléte .

The default sessiorfNone] ’ cannot be deleted.

3 Requires X11R6 or later.

Chapter 2: Getting In and Out of DDD 31

2.3.4 Customizing Sessions

You can change the place whep®D saves its sessions by setting the environment variable
DDD_SESSIONSo the name of a directory. Default is/.ddd/sessions/ "

Where applicableppp supports agcore command to obtain core files of the running program.
You can enter its path vigEdit = Preferences = Helpers = Get Core File . Leave
the value empty if you have rgcore or similar command.

This setting is tied to the following resource (seection 3.6 [Customizing], page 8

getCoreCommand (class GetCoreCommand) Resource
A command to get a core dump of a running process (typicgipre) ‘@FILE@is re-
placed by the base name of the file to crea@P1D@is replaced by the process id. The
output must be written ta@FILE@.@PID@

Leave the value empty if you have goore or similar command.

2.4 Remote Debugging

You can have each aipDp, the inferior debugger, and the debugged program run on different
machines.

2.4.1 Running DDD on a Remote Host

You can runbDD on a remote host, using your current host as X display. On the remote host,
invokeDDD as

ddd -display display

wheredisplay is the name of the X server to connect to (for instan&esthame:0.0 ’, where
hostname is your host).

Instead of specifying-tlisplay display’, you can also set thBISPLAY environment variable
to display.

2.4.2 Using DDD with a Remote Inferior Debugger

In order to run the inferior debugger on a remote host, you nesdsh ’ (called ‘rsh ' on BSD
systems) access on the remote host.

To run the debugger on a remote hbsttname, invokepDD as
ddd --host hostname remote-program

If your remoteusername differs from the local username, use

ddd --host hostname --login username remote-program
or

ddd --host username@hostname remote-program
instead.

There are a fewaveatsn remote mode:

32 Debugging with DDD

e The remote debugger is started in your remote home directory. Hence, you must specify an ab-
solute path name faemote-program (or a path name relative to your remote home directory).
Same applies to remote core files. Also, be sure to specify a remote process id when debugging
a running program.

e The remote debugger is started non-interactively. Somre versions have trouble with this.
If you do not get a prompt from the remote debugger, use-thidst ' option instead of
‘--host . This will invoke the remote debugger via an interactive shell on the remote host,
which may lead to better results.

Note: using *-rhost ’, DDD invokes the inferior debugger as soon as a shell prompt appears.
The first output on the remote host ending in a space charactet and not followed by a
newline is assumed to be a shell prompt. If necessary, adjust your shell prompt on the remote
host.

e To run the remote progranppD invokes an xterm ’ terminal emulator on the remote
host, giving your currentDISPLAY’ environment variable as address. If the remote host
cannot invoke xterm ’, or does not have access to your X display, stanb with the
‘--no-exec-window ’ option. The program input/output will then go through thep
debugger console.

e Inremote mode, all sources are loaded from the remote host; file dialogs scan remote directo-
ries. This may result in somewhat slower operation than normal.

e To help you find problems due to remote execution,spm with the --trace ’ option. This
prints the shell commands issuedibyD on standard error.

SeeSection 2.4.2.1 [Customizing Remote Debugging], pagddiZustomizing remote mode.

2.4.2.1 Customizing Remote Debugging

When having the inferior debugger run on a remote host$se¢on 2.4 [Remote Debugging],
page 3), all commands to access the inferior debugger as well as its files must be run remotely.
This is controlled by the following resources (seection 3.6 [Customizing], page 58

rshCommand (class RshCommand) Resource
The remote shell command to invokery-based commands on remote hosts. Usually,
remsh , rsh , ssh, oron.

listCoreCommand (class listCoreCommand) Resource
The command to list all core files on the remote host. The st@iIASK® replaced by a
file filter. The default setting is:

Ddd*listCoreCommand: \
file @MASK@ | grep '.*.*core.* | cut -d: -f1

listDirCommand (class listDirCommand) Resource
The command to list all directories on the remote host. The sttIASK@ replaced by
a file filter. The default setting is:
Ddd*listDirCommand: \
file @MASK@ | grep '.*.*directory.* | cut -d: -f1

Chapter 2: Getting In and Out of DDD 33

listExecCommand (class listExecCommand) Resource
The command to list all executable files on the remote host. The s@MASK® replaced
by a file filter. The default setting is:

Ddd*listExecCommand: \

file @MASK@ | grep '.*.*exec.* \
| grep -v ¥l *script.*’ |\
| cut -d: -f1 | grep -v "*\.o$

listSourceCommand (class listSourceCommand) Resource
The command to list all source files on the remote host. The st@JASK®@ replaced by
a file filter. The default setting is:

Ddd*listSourceCommand: \
file @MASK@ | grep '.*.*text.* | cut -d: -f1

2.4.3 Debugging a Remote Program

Thecps debugger allows you to run tlieebugged prograran a remote machine (calleemote
targed), while GDB runs on the local machine.

Seesection "Remote Debugging” iPebugging with GDB, for details. Basically, the following
steps are required:

e Transfer the executable to the remote target.
e Startgdbserver on the remote target.

e Startppp usingeDB on the local machine, and load the same executable usingkdile
command.

e Attach to the remotegdbserver ’using thecDB targetremote ~ command.

The local ‘gdbinit ' file is useful for setting up directory search paths, etc.

Of course, you can also combip®D remote mode andDB remote mode, runningdD, GDB,
and the debugged program each on a different machine.

2.5 Customizing Interaction with the Inferior Debugger

These settings control the interactionmasp with its inferior debugger.

2.5.1 Invoking an Inferior Debugger

To choose the default inferior debugger, seldetit = Preferences = Startup =
Debugger Type . You can

e haveppD determine the appropriate inferior debugger automatically from its command-line
arguments. SeDetermine Automatically from Arguments "to enable.

e havepDD start the debugger of your choice, as specifiediaebugger Type .

The following bpDD resources control the invocation of the inferior debugger sagion 3.6
[Customizing], page 58

34 Debugging with DDD

autoDebugger (class AutoDebugger) Resource
If this is ‘on’ (default), pDD will attempt to determine the debugger type from its arguments,
possibly overriding thedebugger ’resource (see below). If this i®ff ', bpD will invoke
the debugger specified by théebugger ’ resource regardless ofbp arguments.

debugger (class Debugger) Resource

The type of the inferior debugger to invokeg@b’, ‘dbx’, ‘ladebug ’, ‘xdb’, ‘jdb ’,
‘pydb’, or ‘perl).

This resource is usually set through thegdb ’, ‘--dbx °’, ‘--ladebug ', ‘--xdb ’,
‘--jdb ", *--pydb ’, and ‘--perl ’, options; SeeSection 2.1.2 [Options], page ,1for
details.

debuggerCommand (class DebuggerCommand) Resource

The name under which the inferior debugger is to be invoked. If this string is empty (default),
the debugger typedebugger ’'resource) is used.

This resource is usually set through thelebugger ' option; SeeSection 2.1.2 [Options],
page 16 for details.

2.5.2 Initializing the Inferior Debugger

DDD uses a number of resources to initialize the inferior debuggerysegon 3.6 [Customiz-
ing], page 5§

2.5.2.1 GDB Initialization

gdblnitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially semro

As a side-effect, all settings specified in this resource are considered fixed and cannot be

changed through thepB settings panel, unless preceded by white space. By default, the
‘gdbInitCommands ’resource contains some settings vitabtob:

Ddd*gdblInitCommands: \

set height 0\n\

set width O\n\

set verbose offin\

set prompt (gdb) \n
While the ‘set height 7, ‘setwidth ’, and ‘set prompt °’ settings are fixed, theset

verbose ’ settings can be changed through thes settings panel (although being reset
upon each newDD invocation).

Do not use this resource to customizes; instead, use a personal/:gdbinit 'file. See
your ¢DB documentation for details.

gdbSettings (class Settings) Resource

This string contains a list of newline-separated commands that are also initially saws.to
Its default value is

Chapter 2: Getting In and Out of DDD 35

Ddd*gdbSettings: \
set print asm-demangle on\n

This resource is used to save and restore the debugger settings.

sourcelnitCommands (class SourcelnitCommands) Resource
If “on’ (default), DDD writes allcDB initialization commands into a temporary file and makes

GDB read this file, rather than sending each initialization command separately. This results in

faster startup (especially if you have several user-defined commandsif. If ‘DDD makes
GDB process each command separately.

2.5.2.2 DBX Initialization

dbxInitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially sepixtoBy
default, it is empty.
Do not use this resource to customizex; instead, use a personat/:dbxinit " or
‘~/.dbxrc ’file. See yournBx documentation for details.

dbxSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially et to
By default, it is empty.

2.5.2.3 XDB Initialization

xdbInitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially senitoBy
default, it is empty.
Do not use this resource to customizex; instead, use a personal/:xdbrc ' file. See
your xDpB documentation for details.

xdbSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially sa.to
By default, it is empty.

2.5.2.4 JDB Initialization

jdbInitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially semtd his
resource may be used to customipss. By default, it is empty.

jdbSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially sem.to
By default, it is empty.
This resource is used hypp to save and restormB settings.

36 Debugging with DDD

2.5.2.5 PYDB Initialization

pydblnitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially senbta By
default, it is empty.

This resource may be used to custonizeB.

pydbSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially semito
By default, it is empty.

This resource is used hypD to save and restoreyDB settings.

2.5.2.6 Perl Initialization

perlinitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially sent to the Perl
debugger. By default, it is empty.

This resource may be used to customize the Perl debugger.

perlSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially sent to the
Perl debugger. By default, it is empty.

This resource is used hypp to save and restore Perl debugger settings.

2.5.2.7 Opening the Selection

openSelection(class OpenSelection) Resource
If this is ‘on’, bpD invoked without argument checks whether the current selection or clip-
board contains the file name or URL of an executable program. If this istsowill auto-
matically open this program for debugging. If this resourcefs " (default), bpD invoked
without arguments will always start without a debugged program.

2.5.3 Communication with the Inferior Debugger

The following resources control the communication with the inferior debugger.

blockTTYInput (class BlockTTYInput) Resource
Whetherppp should block when reading data from the inferior debugger via the pseudo-tty
interface. MostUNIX systems exceptNU/Linux requirethis; set it to bn’. On aNU/Linux,
set it to ‘off ’. The value auto ’ (default) will always select the “best” choice (that is, the
best choice known to thepp developers).

displayTimeout (class DisplayTimeout) Resource
The time (in ms) to wait for the inferior debugger to finish a partial display information.
Default is2000.

Chapter 2: Getting In and Out of DDD 37

positionTimeout (class PositionTimeout) Resource
The time (in ms) to wait for the inferior debugger to finish a partial position information.
Default is500.

guestionTimeout (class QuestionTimeout) Resource
The time (in seconds) to wait for the inferior debugger to reply. Defadl®is

synchronousDebugger(class SynchronousDebugger) Resource
If “on’, X events are not processed while the debugger is busy. This may result in slightly
better performance on single-processor systems.S8eeon 2.1.2 [Options], page ,Lfor
the --sync-debugger ' option.

terminateOnEOF (class TerminateOnEOF) Resource
If “on’, DDD terminates the inferior debugger whenp detects an EOF condition (that is,
as soon as the inferior debugger closes its output channel). This was the default behavior in
DDD 2.x and earlier. Ifoff ' (default), DDD takes no special action.

useTTYCommand (class UseTTYCommand) Resource
If ‘on’, use thegDpB tty command for redirecting input/output to the separate execution
window. If ‘off ’, use explicit redirection through shell redirection operater'sand ‘>'.
The default is 6ff ’ (explicit redirection), since on some systems, ttye command does
not work properly on somebDB versions.

38

Debugging with DDD

Chapter 3: The DDD Windows 39

3 The DDD Windows

DDD is composed of three main windows. From top to bottom, we have:

e TheData Window shows the current data of the debugged program.S8e&on 7.3 [Display-
ing Values], page 1Q%or detalils.

e The Source Window shows the current source code of the debugged programCiSgger 4
[Navigating], page 7,1for details.

e TheDebugger Console accepts debugger commands and shows debugger messagesaSee
ter 10 [Commands], page 14fér details.

£& DDD: Jusriusers/sts1/zeller/ddd/dddicxxtest.C JH[=] E3
—=File Edit View Progran Commands Status Source Data Help
Menu Bar Ale Edit View Pr o tatus S D H
e ~ - . - S T o o M
Tool Bar—f] isomeomeroet (B @ &8 22 @ 88 B
2. *Tist ; ~Tist_onest
. 1(: 'Iist:| - Va.]l.;g =85 . I VE#E =86 o
List *) 0x804ab78| se = 0x804ab78 se = 0x804abss|l -
Da'ta WIndOW r next = 0xB04ab88 \ next = 0x804abss)| [Panner
A simple circular Tist. Examine "1ist” with alias detection enabled)pss
wold Tist_test{int start)
Run
ist *list = 0;
List *1ist = 0; T
Tist = new List{a_global + start+);
Tist-snext = new List(a_global + start+); Stepllfstept
list—>next—>next = new List{a_global + start+); Hext | Mexti
Tist—rnext—rnext—>next = Tist; It " C d T |
intil Lein
D delete list-snext->next; cont| i || 1 omman 00
delete list—>next;
delate 1ist; Up | Down
3
. Back | Fud
Source WiNndow —/ et disambiguation e e || | Scroll Bar
void Tist_test(double o) . ¢
Tist_test(int(d));
A .
77— Resize Sash
. . D 0x8048a27 <list_test_ Fi+151%: mov] OxfFFFFFFci%ebp) ,%eax g
Machine Code Window — = OxBo4faza <1ist_rest_Fi+i54>: mowl %6 (eax), Yedx =
b78 (1345237 — i
LLELUAELIRE Gl S fALE
(gdb) graph display *1ist dependent on 1 Value Tlp
(gdb) graph display *(1ist—>next) dependent an 2
(gdh) araph display *(1ist—rnext—rnext) dependent an 3
Debugger Console ——éatb) sraph display *(1ist-oneKtonekt-next) dependent on 4 u
g i
£
Status Line — et - 0:804ab78 (134523768) B Busy Indicator

The DDD Layout using Stacked Windows

Besides these three main windows, there are some other optional windows:

e The Command Tool offers buttons for frequently used commands. It is usually placed on the
source window. Segection 3.3 [Command Tool], page,d6r details.

e The Machine Code Window shows the current machine code. It is usually placed beneath the
current source. Segection 8.1 [Machine Code], page 13ar details.

e The Execution Window shows the input and output of the debugged program.S8eé&on 6.2
[Using the Execution Window], page 9fbr details.

3.1 The Menu Bar

Theppb Menu Bar gives you access to albp functions.

File Perform file-related operations such as selecting programs, processes, and sessions,
printing graphs, recompiling, as well as exitingb.

40 Debugging with DDD

Edit Perform standard editing operations, such as cutting, copying, pasting, and killing
selected text. Also allows editingpp options and preferences.

View Allows accessing the individualpp windows.

Program Perform operations related to the program being debugged, such as starting and stop-
ping the program.

Commands
Perform operations related tmb commands, such as accessing the command history
or defining new commands.

Status Examine the program status, such as the stack traces, registers, or threads.
Source Perform source-related operations such as looking up items or editing breakpoints.
Data Perform data-related operations such as editing displays or layouting the display graph.

Maintenance
Perform operations that are useful for debuggimgp. By default, this menu is dis-
abled.

Help Give help onbpD usage.

There are two ways of selecting an item from a pull-down menu:

e Select an item in the menu bar by moving the cursor over it and aticlse button.1Then
move the cursor over the menu item you want to choose and click left again.

e Select an item in the menu bar by moving the cursor over it and click andimide button.1
With the mouse button depressed, move the cursor over the menu item you want, then release
it to make your selection.

The menus can also liern off (i.e. turned into a persistent window) by selecting the dashed
line at the top.

If a command in the pull-down menu is not applicable in a given situation, the command is
disabled and its name appears faded. You cannot invoke items that are faded. For example, many
commands on theEdit ' menu appear faded until you select text on which they are to operate;
after you select a block of text, edit commands are enabled.

3.1.1 The File Menu

The ‘File ' menu contains file-related operations such as selecting programs, processes, and
sessions, printing graphs, recompiling, as well as exiting.

Open Program

Open Class
Open a program or class to be debugged. Seetion 4.2.1 [Opening Programs],
page 71for details.

Open Recent
Re-open a recently opened program to be debuggedsSSaen 4.2.1 [Opening Pro-
grams], page 71for details.

Open Core Dump
Open a core dump for the currently debugged program. S8e¢on 4.2.2 [Opening
Core Dumps], page 7Z%or details.

Chapter 3: The DDD Windows 41

Open Source
Open a source file of the currently debugged program. SSsion 4.2.3 [Opening
Source Files], page 7for detalils.

Open Session
Resume a previously savethp session. Seé&ection 2.3.2 [Resuming Sessions],
page 29for details.

Save Session As
Save the currenbpb session such that you can resume it later. Seetion 2.3.1
[Saving Sessions], page or details.

Attach to Process
Attach to a running process of the debugged program.S8eé&on 6.3 [Attaching to a
Process|, page 9for details.

Detach Process
Detach from the running process. Seection 6.3 [Attaching to a Process], pagg 92
for detalils.

Print Graph
Print the current graph on a printer. Seection 7.3.6 [Printing the Graph], page 124
for detalils.

Change Directory
Change the working directory of your program. Sg&ection 6.1.3 [Working Direc-
tory], page 90for details.

Make Run themake program. Seé&ection 9.2 [Recompiling], page 14fér details.
Close Close thisbpp window.
Restart Restartopp.

Exit Exit DDD.

3.1.2 The Edit Menu

The ‘Edit ' menu contains standard editing operations, such as cutting, copying, pasting, and
killing selected text. Also allows editingpp options and preferences.

Undo Undo the most recent action. Almost all commands can be undone this way. See
Section 3.5 [Undo and Redo], page, 5@ details.

Redo Redo the action most recently undone. Every command undone can be redone this
way. SeeSection 3.5 [Undo and Redo], page, far details.

Cut Removes the selected text block from the current text area and makes it the X clipboard
selection. Before executing this command, you have to select a region in a text area—
either with the mouse or with the usual text selection keys.

This item can also be applied to displays (S&ection 7.3.1.11 [Deleting Displays],
page 114

42

Debugging with DDD

Copy Makes a selected text block the X clipboard selection. You can select text by selecting
a text region with the usual text selection keys or with the mouseS8eeon 3.1.11.2
[Customizing the Edit Menu], page 4for changing the default accelerator.

This item can also be applied to displays (Seestion 7.3.1.11 [Deleting Displays],
page 114

Paste Inserts the current value of the X clipboard selection in the most recently selected text
area. You can paste in text you have placed in the clipboard uSiogy’ or ‘ Cut .

You can also usePaste ' to insert text that was pasted into the clipboard from other
applications.

Clear Clears the most recently selected text area.

Delete Removes the selected text block from the most recently selected text area, but does not
make it the X clipboard selection.

This item can also be applied to displays (Seection 7.3.1.11 [Deleting Displays],
page 114

Select All
Selects all characters from the most recently selected text areé&e8een 3.1.11.2
[Customizing the Edit Menu], page 4for changing the default accelerator.

Preferences
Allows you to customizedoDD interactively. Se&ection 3.6 [Customizing], page 58
for detalils.

Debugger Settings

Allows you to customize the inferior debugger. Saection 3.6.5 [Debugger Settings],
page 68for details.

Save Options

Saves all preferences and settings for the maxb invocation. Seesection 3.6.1.3
[Saving Options], page 5%or details.

3.1.3 The View Menu

The ‘View ' menu allows accessing the individuabbp windows.

Command Tool

Open and recenter the command tool. Seetion 3.3 [Command Tool], page,d8r
details.

Execution Window

Open the separate execution window. Seetion 6.2 [Using the Execution Window],
page 91 for details.

Debugger Console

Open the debugger console. Sgeapter 10 [Commands], page 146r details.

Source Window

Open the source window. S€gapter 4 [Navigating], page /for details.

Data Window

Open the data window. Sé&=ction 7.3 [Displaying Values], page 1@6r details.

Chapter 3: The DDD Windows 43

Machine Code Window
Show machine code. Séexction 8.1 [Machine Code], page 13ar details.

3.1.4 The Program Menu

The ‘Program ' menu performs operations related to the program being debugged, such as
starting and stopping the program.

Most of these operations are also found on the command toob(seen 3.3 [Command Tool],
page 53.

Run Start program execution, prompting for program arguments.S8eeon 6.1 [Starting
Program Execution], page gfor details.

Run Again
Start program execution with the most recently used argument$e3gien 6.1 [Start-
ing Program Execution], page 8f@r details.

Run in Execution Window
If enabled, start next program execution in separate execution windoveSeen 6.2
[Using the Execution Window], page 9fbr details.

Step Continue running your program until control reaches a different source line, then stop
it and return control topD. SeeSection 6.5 [Resuming Execution], page, $ar
details.

Step Instruction
Execute one machine instruction, then stop and retuppto. SeeSection 8.2 [Ma-
chine Code Execution], page 1,36r details.

Next Continue to the next source line in the current (innermost) stack frame. This is similar
to ‘Step ’, but function calls that appear within the line of code are executed without
stopping. Se&ection 6.5 [Resuming Execution], page fof details.

Next Instruction
Execute one machine instruction, but if it is a function call, proceed until the function
returns. Se&ection 8.2 [Machine Code Execution], page ,1fo¢ details.

Until Continue running until a source line past the current line, in the current stack frame, is
reached. Se8ection 6.5 [Resuming Execution], page fof details.

Finish Continue running until just after function in the selected stack frame returns. Print the
returned value (if any). Seeection 6.5 [Resuming Execution], page for details.

Continue
Resume program execution, at the address where your program last stopped; any
breakpoints set at that address are bypassedS8e&@n 6.5 [Resuming Execution],
page 94for details.

Continue Without Signal

Continue execution without giving a signal. This is useful when your program
stopped on account of a signal and would ordinary see the signal when resumed with
‘Continue . SeeSection 6.10 [Signals], page 1,d0r details.

44 Debugging with DDD

Kill Kill the process of the debugged program. Sawtion 6.11 [Killing the Program],
page 102for details.

Interrupt
Interrupt program execution. This is equivalent to sending an interrupt signal to the
process. Se8ection 5.3 [Interrupting], page Sfor details.

Abort Abort program execution (and maybe debugger execution, too). This is equivalent to
sending aSIGABRT signal to the process. Sé&ction 2.2 [Quitting], page 2 for
details.

3.1.5 The Commands Menu

The ‘Commands menu performs operations relatedilob commands, such as accessing the
command history or defining new commands.

Most of these items are not meant to be actually executed via the menu; instead, they serve as
reminderfor the equivalent keyboard commands.

Command History
View the command history. Segection 10.1.2 [Command History], page 14dr

details.

Previous
Show the previous command from the command history. Seeion 10.1.2 [Com-
mand History], page 144or details.

Next Show the next command from the command history. Seetion 10.1.2 [Command

History], page 144for detalils.

Find Backward
Do an incremental search backward through the command historeSéien 10.1.2
[Command History], page 144or details.

Find Forward
Do an incremental search forward through the command historyS8egon 10.1.2
[Command History], page 144or details.

Quit Search
Quit incremental search through the command history.Seéion 10.1.2 [Command
History], page 144for detalils.

Complete
Complete the current command in the debugger console SSeigon 10.1 [Entering
Commands], page 14for details.

Apply Apply the current command in the debugger console.S8e¢ion 10.1 [Entering Com-
mands], page 143or detalils.

Clear Line
Clear the current command line in the debugger console.S8eeon 10.1 [Entering
Commands], page 14for details.

Clear Window
Clear the debugger console. Seection 10.1 [Entering Commands], page ,1fo#
details.

Chapter 3: The DDD Windows 45

Define Command
Define a new debugger command. Seetion 10.5 [Defining Commands], page ;150
for details.

Edit Buttons
Customizeppb buttons. Se&ection 10.4 [Defining Buttons], page 14ar details.

3.1.6 The Status Menu

The ‘Status ' menu lets you examine the program status, such as the stack traces, registers, or
threads.

Backtrace
View the current backtrace. S&ection 6.7.2 [Backtraces], page, ¥ar a discussion.

Registers
View the current register contents. Seection 8.3 [Registers], page 1,36r details.

Threads View the current threads. Sé&ection 6.9 [Threads], page 98r details.

Signals View and edit the current signal handling. Seection 6.10 [Signals], page 1,0for
details.

Up Select the stack frame (i.e. the function) that called this one. This advances toward
the outermost frame, to higher frame numbers, to frames that have existed longer. See
Section 6.7 [Stack], page 9for details.

Down Select the stack frame (i.e. the function) that was called by this one. This advances
toward the innermost frame, to lower frame numbers, to frames that were created more
recently. Seé&ection 6.7 [Stack], page 9for details.

3.1.7 The Source Menu

The ‘Source ' menu performs source-related operations such as looking up items or editing
breakpoints.

Breakpoints
Edit all Breakpoints. SeBection 5.1.11 [Editing all Breakpoints], page fi@r details.

Lookup ()
Look up the argumen() ’in the source code. Se&ection 4.3.1 [Looking up Defini-
tions], page 73for details.

Find >> ()
Look up the next occurrence of the argumef)t " in the current source code. See
Section 4.3.2 [Textual Search], page for details.

Find << ()

Look up the previous occurrence of the argumént in the current source code. See
Section 4.3.2 [Textual Search], page for details.

Find Words Only
If enabled, find only complete words. S8ection 4.3.2 [Textual Search], page for
detalils.

46 Debugging with DDD

Find Case Sensitive
If enabled, find is case-sensitive. S®ection 4.3.2 [Textual Search], page, Taér
details.

Display Line Numbers
If enabled, prefix source lines with their line number. Seetion 4.4 [Customizing
Source], page 7,9or details.

Display Machine Code
If enabled, show machine code. S&ection 8.1 [Machine Code], page 1%0r details.

Edit Source
Invoke an editor for the current source file. Seection 9.1 [Editing Source Code],
page 1471for details.

Reload Source
Reload the current source file. S8ection 9.1 [Editing Source Code], page Lfor
details.

3.1.8 The Data Menu

The ‘Data’ menu performs data-related operations such as editing displays or layouting the
display graph.

Displays
Invoke the Display Editor. Se8ection 7.3.1.10 [Editing all Displays], page 11ar
details.

Watchpoints
Edit all Watchpoints. SeBection 5.2.3 [Editing all Watchpoints], page, &ar details.

Memory View a memory dump. Se®ection 7.5 [Examining Memaory], page 1,3ér details.

Print () Print the value of () ' in the debugger console. Sé&ction 7.2 [Printing Values],
page 104for details.

Display ()
Display the value of() ' in the data window. Seé&ection 7.3 [Displaying Values],
page 105for details.

Detect Aliases
If enabled, detect shared data structures. Seetion 7.3.4.3 [Shared Structures],
page 113for a discussion.

Display Local Variables
Show all local variables in a display. S8ection 7.3.1.5 [Displaying Local Variables],
page 109for details.

Display Arguments
Show all arguments of the current function in a display. Seetion 7.3.1.5 [Display-
ing Local Variables], page 10Q%or details.

Status Displays
Show current debugging information in a display. Se&sction 7.3.1.6 [Displaying
Program Status], page 1for details.

Chapter 3: The DDD Windows 47

Align on Grid
Align all displays on the grid. Se®ection 7.3.5.3 [Aligning Displays], page 1,48r
a discussion.

Rotate Graph
Rotate the graph by 90 degrees. Seestion 7.3.5.5 [Rotating the Graph], page 123
for detalils.

Layout Graph
Layout the graph. Se®ection 7.3.5 [Layouting the Graph], page 1ot details.

Refresh Update all values in the data window. Seection 7.3.1.7 [Refreshing the Data Win-
dow], page 11]for details.

3.1.9 The Maintenance Menu

The ‘Maintenance ' menu performs operations that are useful for debugging.

By default, this menu is disabled; it is enabled by specifically requestingoibatinvocation
(via the --maintenance ' option; seeSection 2.1.2 [Options], page .Gt is also enabled when
DDD gets a fatal signal.

Debug pDD
Invoke a debugger (typicallzpB) and attach it to thi®pD process. This is useful
only if you are abbD maintainer.

Dump Core Now
Make thisppp process dump core. This can also be achieved by sengimga
SIGUSR1signal.

Tic Tac Toe
Invoke a Tic Tac Toe game. You must try to get three stop signs in a row, while
preventingppb from doing so with its skulls. Click orNew Gaméto restart.

WhenppD Crashes
Select what to do whenpb gets a fatal signal.

Debug ppD
Invoke a debugger on thepp core dump whembDD crashes. This is
useful only if you are apD maintainer.

Dump Core
Just dump core whenpbD crashes; don't invoke a debugger. This is
the default setting, as the core dump may contain important information
required for debuggingpp.

Do Nothing
Do not dump core or invoke a debugger wharb crashes.

Remove Menu
Make this menu inaccessible again.

48 Debugging with DDD

3.1.10 The Help Menu

The ‘Help ' menu gives help omDD usage. Seé&ection 3.4 [Getting Help], page 5for a
discussion on how to get help withisbp.

Overview
Explains the most important conceptsoafp help.

On Item Lets you click on an item to get help on it.

On Window
Gives you help on thispp window.

What Now?
Gives a hint on what to do next.

Tip of the Day
Shows the current tip of the day.

DDD Reference
Shows theobp Manual.

DDD News Shows what's new in thisDD release.

Debugger Reference
Shows the on-line documentation for the inferior debugger.

DDD License
Shows the>DpD License (seé\ppendix G [License], page 11

DDD WwWW Page
Invokes awww browser for theobD www page.

About DDD
Shows version and copyright information.

3.1.11 Customizing the Menu Bar

The Menu Bar can be customized in various ways segion 3.6 [Customizing], page b8

3.1.11.1 Auto-Raise Menus

You can cause pull-down menus to be raised automatically.

autoRaiseMenu (class AutoRaiseMenu) Resource
If * on’ (default), ppD will always keep the pull down menu on top of thep main window.
If this setting interferes with your window manager, or if your window manager does not
auto-raise windows, set this resourcedadtf ‘.

autoRaiseMenuDelay (class AutoRaiseMenuDelay) Resource
The time (in ms) during which an initial auto-raised window blocks further auto-raises. This
is done to prevent two overlapping auto-raised windows from enterirgugsraise loop
Default is100.

Chapter 3: The DDD Windows 49

3.1.11.2 Customizing the Edit Menu

In the Menu Bar, the Edit * Menu can be customized in various ways. Ug$ait =
Preferences = Startup ’to customize these keys.

The (CirT+C) key can be bound to different actions, each in accordance with a specific style guide.

Copy This setting bindgCirI+C) to the Copy operation, as specified by the KDE style guide.
In this setting, us€EST to interrupt the debuggee.

Interrupt

This (default) setting bind&ir+C) to the Interrupt operation, as used in severaix command-
line programs. In this setting, ugetri+Ins to copy text to the clipboard.

The (Ctr+A) key can be bound to different actions, too.

Select All
This (default) setting bind&irI+A) to the ‘Select All ’ operation, as specified by
the KDE style guide. In this setting, ugéome to move the cursor to the beginning of
aline.

Beginning of Line
This setting bindgCirT+A) to the Beginning of Line ' operation, as used in sev-
eralUNIX text-editing programs. In this setting, USEM+ShifttA) to select all text.

Here are the relatenbD resources:

cutCopyPasteBindings(class BindingStyle) Resource
Controls the key bindings for clipboard operations.
e |If thisis ‘Motif ' (default), Cut/Copy/Paste is aBhifttDel)/ (Ctri+Ins/ShiftfIns). This
is conformant to the Motif style guide.
e If this is ‘KDE, Cut/Copy/Paste is ofCirI+X)/(CirI+C)/(CtrI+V). This is conformant
to the KDE style guide. Note that this means tk@&@T+C) no longer interrupts the
debuggee; us@&SQ instead.

selectAllBindings (class BindingStyle) Resource
Controls the key bindings for th&elect All ' operation.
e Ifthisis ‘Motif ', Select All is onShift+Cir+A).

e |[f this is ‘KDE (default), Select All is onCir+A). This is conformant to the KDE style
guide. Note that this means th@ir+A) no longer moves the cursor to the beginning of
a line; useHome instead.

3.2 The Tool Bar

SomeDpDD commands require aargument This argument is specified in ttlegument field
labeled (): . Basically, there are four ways to set arguments:

e You cankey inthe argument manually.

e You canpastethe current selection into the argument field (typically usimguse button
2). To clear old contents beforehand, click on tfle *’ label.

50 Debugging with DDD

e You canselect an itenfrom the source and data windows. This will automatically copy the
item to the argument field.

e You can select areviously used argumefrom the drop-down menu at the right of the argu-
ment field.

Using ¢pB and Perl, the argument field provides a completion mechanism. You can enter the
first few characters of an item an press {h&B) key to complete it. Pressin@AB) again shows
alternative completions.

After having entered an argument, you can select one of the buttons on the right. Most of these
buttons also have menus associated with them; this is indicated by a small arrow in the upper right
corner. Pressing and holdingouse button bn such a button will pop up a menu with further
operations.

Enter Argument Get Previous Arguments

|
{]:Iarraﬁ ' E () @ W L 2 oA 1 W Z &L
L?ﬂ:-kup /F;Hd» Bré\ak I..Jaych Prmf\l:usplw\ﬁhnm\ Rnt{ate /Zet Upndi=p

Lookup Commands Breakpoint Commands Data Commands

The Tool Bar

These are the buttons of the tool bar. Note that not all buttons may be inactive, depending on the
current state and the capabilities of the inferior debugger.

Lookup

Look up the argumen{) ’in the source code. Segection 4.3.1 [Looking up Defini-
tions], page 73for details.

Find >>

Look up the next occurrence of the argumef)t “in the current source code. See
Section 4.3.2 [Textual Search], page for details.

Break/Clear
Toggle a breakpoint (se&ection 5.1 [Breakpoints], page)/at the location() .

Break If there is no breakpoint at(} ', then this button is labeledBreak .
Clicking on ‘Break ' sets a breakpoint at the locatiof) *’. See Sec-
tion 5.1.1 [Setting Breakpoints], page, fér details.

Clear If there already is a breakpoint af) ‘', then this button is labeled
‘Clear '. Clicking on ‘Clear ’ clears (deletes) the breakpoint at the
location () '. SeeSection 5.1.2 [Deleting Breakpoints], page, &6r
details.

Watch/Unwatch
Toggle a watchpoint (seeection 5.2 [Watchpoints], page)3an the expressior(} .

Chapter 3: The DDD Windows 51

Watch If*() "is not being watched, then this button is label®ddtch . Click-
ing on ‘Watch’ creates a watchpoint on the expressifn”. SeeSec-
tion 5.2.1 [Setting Watchpoints], page,86r details.

Unwatch If*() 'is being watched, then this button is label&thwatch *. Clicking
on ‘Unwatch ’ clears (deletes) the watchpoint d) . SeeSection 5.2.4
[Deleting Watchpoints], page 86or details.

Print
Print the value of () ’ in the debugger console. Sé&ction 7.2 [Printing Values],
page 104for details.
Display
Display the value of() ' in the data window. Seé&ection 7.3 [Displaying Values],
page 105for details.
Plot
Plot ‘() ’in a plot window. Seesection 7.4 [Plotting Values], page 1,46r detalils.
Show/Hide
Toggle details of the selected display(s). Seetion 7.3.1.3 [Showing and Hiding
Detalls], page 10,for a discussion.
Rotate
Rotate the selected display(s). Seection 7.3.1.4 [Rotating Displays], page 1far
details.
Set
Set (change) the value df)‘ . SeeSection 7.3.3 [Assignment], page 1 1ar details.
Undisp

Undisplay (delete) the selected display(s). Seetion 7.3.1.11 [Deleting Displays],
page 114for details.

3.2.1 Customizing the Tool Bar

The ppp tool bar buttons can appear in a variety of styles, customized Kiit ‘ =
Preferences = Startup '

Images This lets each tool bar button show an image illustrating the action.

Captions
This shows the action name below the image.

The default is to have images as well as captions, but you can choose to have only images (saving
space) or only captions.

52 Debugging with DDD

No captions, no images

(2| fnain 7 Lookup ()| Find>> (| Breakat (| Watch () 7| Print (3| Display (ﬂl

Captions, images, flat, color

0 }nain £ @ @T @T E_J\rr:'n"T ?T é..v ..T &k" ﬁv ‘Eﬁl E{

7 Lookup Finds: Break Watch Print Display Flot Shogl Rotate Set Updisgs

-

Captions only, non-flat

-
oty

- . b - b | | -
():|inain ¥ L-:u:-kupl Find»l Breakl uatchl Pritt | nisplwl Plot

- -
F!l:ltatel Set | Urrdisgs

Images only, flat

() | nain LY @ 0 2o o ﬁvl

Tool Bar Appearance

If you choose to have neither images nor captions, tool bar buttons are labeled like other buttons,
as inpbbpD 2.X. Note that this implies that in the stacked window configuration, the common tool bar
cannot be displayed; it is replaced by two separate tool bars,rasnir2. x.

If you enable Flat ' buttons (default), the border of tool bar buttons will appear only if the
mouse pointer is over them. This latest-and-greatestinvention can be disabled, such that the
button border is always shown.

If you enable Color ’ buttons, tool bar images will be colored when enterehib was built
using Motif 2.0 and later, you can also choose a third setting, where buttons appear in color all the
time.

Here are the related resources (Seetion 3.6 [Customizing], page 8

activeButtonColorKey (class ColorKey) Resource
The xpMm color key to use for the images of active buttons (entered or armed)néans
color, ‘g’ (default) means grey, anari means monochrome.

buttonCaptions (class ButtonCaptions) Resource
Whether the tool bar buttons should be shown using captioms, (default) or not (off).
If neither captions nor images are enabled, tool bar buttons are shown using ordinary labels.
See alsobuttonimages ', below.

buttonCaptionGeometry (class ButtonCaptionGeometry) Resource
The geometry of the caption subimage within the button icons. Defa®is7+0-0 .

buttonimages (class Buttonimages) Resource
Whether the tool bar buttons should be shown using images, (Hefault) or not (off).
If neither captions nor images are enabled, tool bar buttons are shown using ordinary labels.
See alsobuttonCaptions ', above.

Chapter 3: The DDD Windows 53

buttonimageGeometry (class ButtonimageGeometry) Resource
The geometry of the image within the button icon. Defaul2isX21+2+0 .

buttonColorKey (class ColorKey) Resource
Thexpwm color key to use for the images of inactive buttons (non-entered or insensitive).
means color,g’ (default) means grey, andri means monochrome.

flatToolbarButtons (class FlatButtons) Resource
If “on’ (default), all tool bar buttons with images or captions are given a ‘flat’ appearance—
the 3-D border only shows up when the pointer is over the icoroftf °, the 3-D border is
shown all the time.

flatDialogButtons (class FlatButtons) Resource
If “on’ (default), all dialog buttons with images or captions are given a ‘flat’ appearance—
the 3-D border only shows up when the pointer is over the icoroftf °, the 3-D border is
shown all the time.

3.3 The Command Tool

The command tool is a small window that gives you access to the most frequentlyposed
commands. It can be moved around on top ofitime® windows, but it can also be placed besides
them.

By default, the command tosticksto theppD source window: Whenever you move thep
source window, the command tool follows such that the distance between source window and com-
mand tool remains the same. By default, the command tool isaaisBraised such that it stays on
top of otherbpp windows.

The command tool can be configured to appear as a command tool bar above the source window;
see Edit = Preferences = Source = Tool Buttons Location ' for details.

Whenever you saveDD state,DDD also saves the distance between command tool and source
window, such that you can select your own individual command tool placement. To move the
command tool to its saved position, us8éw = Command Tool'.

54

Debugging with DDD

£ DDD
Start debugged program Run
Interrupt debugged program Interrupt
Step program one line (step into calls) otep | Stepi Step one instruction (step into calls)
Step program one line (step over calls) Mext | Mexti Step one instruction (step over calls)
Continue until program reaches next line Until | Finizh Continue until frame returns
Continue program after breakpoint Cont Eill Kill execution of debugged program
Select stack frame that called this one Up | Down Select stack frame called by this one
Undo previous action Unda | Redo Redo next action
Edit source file Edit tlake Invoke the make program

The Command Tool

These are the buttons of the command tool. Note that not all buttons may be inactive, depending
on the current state and the capabilities of the inferior debugger.

Run

Interrupt

Step

Stepi

Next

Nexti

Until

Finish

Start program execution. When you click this button, your program will begin to exe-
cute immediately. SeBection 6.1 [Starting Program Execution], pagefe® details.

Interrupt program execution. This is equivalent to sending an interrupt signal to the
process. Segection 5.3 [Interrupting], page 3for details.

Continue running your program until control reaches a different source line, then stop
it and return control toDpD. SeeSection 6.5 [Resuming Execution], page, $ar
details.

Execute one machine instruction, then stop and retuppto. SeeSection 8.2 [Ma-
chine Code Execution], page 1,38r details.

Continue to the next source line in the current (innermost) stack frame. This is similar
to ‘Step ’, but function calls that appear within the line of code are executed without
stopping. Se&ection 6.5 [Resuming Execution], page for details.

Execute one machine instruction, but if it is a function call, proceed until the function
returns. Se&ection 8.2 [Machine Code Execution], page ,1fo details.

Continue running until a source line past the current line, in the current stack frame, is
reached. Seg€ection 6.5 [Resuming Execution], page for details.

Continue running until just after function in the selected stack frame returns. Print the
returned value (if any). Se®ection 6.5 [Resuming Execution], pageg for details.

Chapter 3: The DDD Windows 55

Cont

Kill

Up

Down

Undo

Redo

Edit

Make

Resume program execution, at the address where your program last stopped; any
breakpoints set at that address are bypassedSSe@n 6.5 [Resuming Execution],
page 94for details.

Kill the process of the debugged program. Sawtion 6.11 [Killing the Program],
page 102for details.

Select the stack frame (i.e. the function) that called this one. This advances toward
the outermost frame, to higher frame numbers, to frames that have existed longer. See
Section 6.7 [Stack], page 9for detalils.

Select the stack frame (i.e. the function) that was called by this one. This advances
toward the innermost frame, to lower frame numbers, to frames that were created more
recently. Seé&ection 6.7 [Stack], page 9for details.

Undo the most recent action. Almost all commands can be undone this way. See
Section 3.5 [Undo and Redo], page, 5@ details.

Redo the action most recently undone. Every command undone can be redone this
way. SeeSection 3.5 [Undo and Redo], page, fér details.

Invoke an editor for the current source file. Seection 9.1 [Editing Source Code],
page 14]for details.

Run themake program with the most recently given arguments. Seetion 9.2 [Re-
compiling], page 142for details.

3.3.1 Customizing the Command Tool

The Command Tool can be customized in various ways.

SeeSection 10.4.1 [Customizing Buttons], page 1f&# details on customizing the tool buttons.

3.3.1.1 Disabling the Command Tool

You can disable the command tool and show its buttons in a separate row beneath the tool
bar. To disable the command tool, setit = Preferences = Source = Tool Buttons

Location

= Source Window .

56 Debugging with DDD

£3 DDD Preferences E
General || source pata | Starup | Fonts | Hepers |
Show Position and Breakpoints <~ as Glyphs . as Text Characters
Tool buttons location “ Command Tool -- Source Window
Refer 10 Program Sources 4% by Path Name < by Base Hame
Find J7 Words Only |7 Case Sensitive
Cache J7 Source Files |7 Machine Code
1 Display Source Line Numbers
8 1] 4
| | | JT |
Tah Width Source | i Machine Code |
0k | Hagal | Help |

Source Preferences

Here’s the related resource:

commandToolBar (class ToolBar) Resource
Whether the tool buttons should be shown in a tool bar above the source winoioiy (‘
or within the command tool ¢ff ’, default). Enabling the command tool bar disables the
command tool and vice versa.

3.3.2 Command Tool Position

The following resources control the position of the command tool fserion 3.6 [Customiz-
ing], page 5%

autoRaiseTool (class AutoRaiseTool) Resource
If ‘on’ (default), ppp will always keep the command tool on top of othmpd windows.
If this setting interferes with your window manager, or if your window manager keeps the
command tool on top anyway, set this resourceofd *.

stickyTool (class StickyTool) Resource
If “on’ (default), the command tool automatically follows every movement of the source
window. Whenever the source window is moved, the command tool is moved by the same
offset such that its position relative to the source window remains unchangedt If, ‘the
command tool does not follow source window movements.

toolRightOffset (class Offset) Resource
The distance between the right border of the command tool and the right border of the source
text (in pixels). Default is 8.

toolTopOffset (class Offset) Resource
The distance between the upper border of the command tool and the upper border of the
source text (in pixels). Default is 8.

Chapter 3: The DDD Windows 57

3.3.2.1 Customizing Tool Decoration

The following resources control the decoration of the command toosegon 3.6 [Customiz-
ing], page 5%

decorateTool (class Decorate) Resource
This resource controls the decoration of the command tool.

e |[f thisis ‘off ', the command tool is created adransient window Several window
managers keep transient windows automatically on top of their parents, which is appro-
priate for the command tool. However, your window manager may be configured not
to decorate transient windows, which means that you cannot easily move the command
tool around.

e If this is ‘on’, DDD realizes the command tool astap-level window Such win-
dows are always decorated by the window manager. However, top-level windows are
not automatically kept on top of other windows, such that you may wish to set the
‘autoRaiseTool ’'resource, too.

e If this is ‘auto ' (default), bbD checks whether the window manager decorates tran-
sients. If yes, the command tool is realized as a transient window (as irofhé
setting); if no, the command tool is realized as a top-level window (as inahieset-
ting). Hence, the command tool is always decorated using the “best” method, but the
extra check takes some time.

3.4 Getting Help

DDD has an extensive on-line help system. Here’s how to get help while working>wibh

e You can get a short help text on masbp buttons by simply moving the mouse pointer on it
and leave it there. After a second, a small window (calledon tip; also known asool tip
or balloon help) pops up, giving a hint on the button’s meaning. The button tip disappears as
soon as you move the mouse pointer to another item.

e The status line also displays information about the currently selected item. By clicking on the
status line, you can redisplay the most recent messages.

e You can get detailed help on any visibd®D item. Just point on the item you want help and
press theF1’ key. This pops up a detailed help text.

e ThepDD dialogs all containHelp * buttons that give detailed information about the dialog.

e You can get help on debugger commands by entehiglp at the debugger prompt. See
Section 10.1 [Entering Commands], page ,1f68 details on entering commands.

e If you are totally stuck, tryHelp = What Now? (the ‘What Now? item in the ‘Help’
menu) or presgCiri+FD. Depending on the current statepp will give you some hints on
what you can do next.

e Of course, you can always refer to the-line documentatian

— ‘'Help = pDD Reference ' gives you access to thepp manual, the ultimateopbD
reference.

— ‘Help = Debugger Reference ’shows you the on-line documentation of the inferior
debugger.

58 Debugging with DDD

— ‘Help = ppD www Page’ gives you access to the latest and greatest information on
DDD.

e Finally, theppD Tip Of The Day gives you important hints with each nevnD invocation.
All these functions can be customized in various ways (&e&ion 3.6.2 [Customizing Help],
page 59.

If, after all, you made a mistake, don’t worry: almost everyp command can be undone. See
Section 3.5 [Undo and Redo], page, @ details.

3.5 Undoing and Redoing Commands

Almost everyppb command can be undone, usiriedit = Undo’ or the ‘Undo’ button on
the command tool.

Likewise, ‘Edit = Redo’ repeats the command most recently undone.

The ‘Edit ' menu shows which commands are to be undone and redone next; this is also indi-
cated by the popup help on thendo’ and ‘Redo’ buttons.

3.6 Customizing DDD

DDD is controlled by severaksources-user-defined variables that take specific values in order
to control and customizepp behavior.

Most DDD resources can be set interactively whiep is running or when invokingppp. See
[Resource Index], page 19for the full list of DDD resources.

We first discuss how customizing works in general; then we turn to customizing parstsoof
introduced so far.

3.6.1 How Customizing DDD Works

3.6.1.1 Resources

Just like any X progranhpb has a number of places to get resource values frompbor, the
most important places to specify resources are:

e The ~/.ddd/init " file (" ~" stands for your home directory). This file is read in byD
upon start-up; the resources specified herein override all other sources (except for resources
given implicitly by command-line options).
If the environment variabl®DD_STATES set, its value is used instead ef.ddd/ .

e The ‘Ddd’ application-defaults file. This file is typically compiled into teD executable.
If it exists, its resource values override the values compiledimio. If the versions of the
‘Ddd’ application-defaults file and thepp executable do not matcihpp may not function
properly;ppD will give you a warning in this case.

e The command-line options. These options override all other resource settings.

L If you use a Ddd’ application-defaults file, you will not be able to maintain multiplep versions at the
same time. This is why the suitin@dd’ is normally compiled into thepp executable.

Chapter 3: The DDD Windows 59

e If the environment variabl®DD_SESSIONSs set, it indicates the name of a session to start,
overriding all options and resources. This is usedby when restarting itself.

Not every resource has a matching command-line option. Each resource (whether in
‘~/.ddd/init "or ‘Ddd) is specified using a line
Ddd* resource: value
For instance, to set theollChildStatus
‘~/.ddd/init "
Ddd*pollChildStatus: off

For more details on the syntax of resource specifications, see the sSRES@WURCES in the
X(1) manual page.

resource to off ’, you would specify in

3.6.1.2 Changing Resources

You can chang®pbp resources by three methods:

e UseDnDD to change the options, notabligdit = Preferences . This works for the most
importantbDD resources. Be sure to save the options (seeion 3.6.1.3 [Saving Options],
page 5% such that they apply to futumrepp sessions, too.

e You can also invokeoDD with an appropriate command-line option. This changes the re-
latedDDD resource for this particularbp invocation. However, if you save the options (see
Section 3.6.1.3 [Saving Options], page)5the changed resource will also apply to future
invocations.

e Finally, you can set the appropriate resource in a file nanshtl/init " in your home
directory. SeéResource Index], page 19for a list of DDD resources to be set.

3.6.1.3 Saving Options

You can save the current option settings by selectifdjt' = Save Options ’. Options are
saved in a file namedddd/init "in your home directory. If a sessiafession is active, options
will be saved in ~/.ddd/sessions/ session/init ' instead.

3.6.2 Customizing DDD Help

DDD Help can be customized in various ways.

3.6.2.1 Button Tips

Button tips are helpful for novices, but may be distracting for experienced users. You can turn off
button tips via Edit = Preferences = General = Automatic display of Button
Hints = as Popup Tips .

You can also turn off the hint that is displayed in the status line. Just todalé ‘ =
Preferences = General = Automatic Display of Button Hints = inthe
Status Line ’

Here are relatedDpp resources (seBection 3.6 [Customizing], page 18

buttonTips (class Tips) Resource
If ‘on’ (default), enable button tips.

60 Debugging with DDD

buttonDocs (class Docs) Resource
If “ on’ (default), show button hints in the status line.

3.6.2.2 Tip of the day

You can turn off the tip of the day by togglindg=dit =- Preferences = Startup =
Startup Windows = Tip of the Day .

Here is the relatedDD resource (se8ection 3.6 [Customizing], page 58

startupTips (class StartupTips) Resource
If ‘on’ (default), show a tip of the day uparpb startup.

SeeSection 2.1.2 [Options], page 1fér options to set this resource uponD invocation.
The actual tips are controlled by these resources$§se&on 3.6 [Customizing], page B8

startupTipCount (class StartupTipCount) Resource
The numbem of the tip of the day to be shown at startup. See alsottpe h’ resources.

tipn (class Tip) Resource
The tip of the day numbered (a string).

3.6.2.3 Help Helpers

DDD relies on a number of external commands, specified Edit' = Preferences =
Helpers

General | Source | Data | Startup | Fonts || Helpers
Edit Sources | ec +aLINER @FILE@
Get Core File |
List Processes I?ps w 2> fdevinull || ps —ef 2» fdew/null || ps

Execution Window IExterm —bg “grey3s” —fg "black” —cr “Darkireen” —

Uncompress I{gzip -d -
Web Browser Ii’noziﬂa —remote “openURLCEURLEY " || netscape —re
Plot IEgnup]ot —bg “greyds” —font @FONTR’ —name ’@NAME
Plot Window “ External - Builtin

0K Hesal | Help |

Setting Helpers Preferences

To uncompress help texts, you can definkJacompress ' command:

Chapter 3: The DDD Windows 61

uncompressCommand(class UncompressCommand) Resource
The command to uncompress the builteinp manual, theopp license, and thepp news.
Takes a compressed text from standard input and writes the uncompressed text to standard
output. The default value zip -d -c ; typical values includecat andgunzip -c

To view www pages, you can define Web Browser ' command:

wwwCommand (class WWWCommand) Resource
The command to invoke www browser. The string@URL@s replaced by thesrL to
open. Default is to try a running Netscape first (tryimgzilla , thennetscape), then
SWWWBROWSHIRN to invoke a new Netscape process, then to let a running Emacs do the
job, then to invoke Mosaic, then to invoke Lynx in an xterm.

To specify hetscape-4.0 ' as browser, use the setting:

Ddd*wwwCommand: \
netscape-4.0 -remote 'openURL(@URL@) \
|| netscape-4.0 '@URL@’

This command first tries to connect to a runnimgtscape-4.0 browser; if this fails, it
starts a newetscape-4.0 process.

This is the defaultvww Page shown byHelp DpDDD www Page’:

wwwPage (classwwwPage) Resource
Theppp www page. Valuehttp://www.gnu.org/software/ddd/

3.6.3 Customizing Undo

pDD Undo can be customized in various ways.

To set a maximum size for the undo buffer, sedit = Preferences = General =
Undo Buffer Size .

This is related to themaxUndoSize ' resource:

maxUndoSize (class MaxUndoSize) Resource
The maximum memory usage (in bytes) of the undo buffer. Useful for limiting memory
usage. A negative value means to place no limit. Defa@®@0000 , or 2000 kBytes.

You can also limit the number of entries in the undo buffer, regardless of siz&¢sgen 3.6
[Customizing], page 98

maxUndoDepth (class MaxUndoDepth) Resource
The maximum number of entries in the undo buffer. This limits the number of actions that
can be undone, and the number of states that can be shown in historic mode. Useful for
limiting bbD memory usage. A negative value (default) means to place no limit.

To clear the undo buffer at any time, thus reducing memory usage, Edd ‘=
Preferences = General = Clear Undo Buffer

http://www.gnu.org/software/ddd/

62 Debugging with DDD

3.6.4 Customizing the DDD Windows
You can customize thepp Windows in various ways.
3.6.4.1 Splash Screen

You can turn off theppp splash screen shown upon startup. Just selBdit' =
Preferences = Startup DDD Splash Screen .

£2 DDD Preferences
General | Source | Data | Startup Fonts | Helpers |
Window Layout < Stacked Windows - Separate Windows
Cti+Cis 4 Copy - Interrupt
Cti+Ais # Select All - Beginning of Line

Tool Bar Appearance I7 Images _I Captions |~ Aat £ Color LI Bottom

Keyhoard Focus “* Point to Type - Click to Type
Data Scrolling “* Panner -, Scrollbars
Debugger Type I7 Determine ically from Arg

4 GDB + DBY + ¥DE + JDB + PYDB - Perl

Startup Windows I~ DDD Splash Screen _i Tip of the Day
oK | Husat | Help |

Startup Preferences

The value applies only to the nexbp invocation.
This setting is related to the following resource:

splashScreen(class SplashScreen) Resource
If ‘on’ (default), show abDD splash screen upon start-up.

You can also customize the appearance of the splash screefdsgen 3.6 [Customizing],
page 58

splashScreenColorKey(class ColorKey) Resource
The color key to use for thepp splash screen. Possible values include:

e ‘C’ (default) for a color visual,

e ‘g’ for a multi-level greyscale visual,

e ‘g4’ for a 4-level greyscale visual, and

e ‘nifor a dithered monochrome visual.

e ‘best ' chooses the best visual available for your display.

Please note: ibpp runs on a monochrome display, onibp was compiled without thepm
library, only the monochrome versiomf) can be shown.

Chapter 3: The DDD Windows 63

3.6.4.2 Window Layout

By default,ppDD stacks commands, source, and data in one single top-level window. To have
separate top-level windows for source, data, and debugger consoledget=- Preferences
= Startup = Window Layout = Separate Windows

£3 DDD: Debugger Console =10l x]
Fle Edit View Program Commands Help |
: ; a
Breakpoint 1, Tist_test (start=48) at
Debugger C0n50|e Jusrfusers/sts1/zeller/ddd/ddd/ cxxtest. 1150
(adh) aranh disahle disnlavy > 5
|
Fle Edit View Program Status Source Help | £
0:|ms§ v G @ @ 2 e
Lookus Find» Bresk Ustch Print Dispiay
jst— — — — 1ist: A
Tist—rnext=>next—rnext Tist;
delete 1ist—rnext—rnext: Run

delete list—rnext;
delete Tist; _Interrupt |

step | stepi

S¢ Test disambiguation Mext | Nexti
void Tist_test{double d)

Source Window

Until | Finish

Tist_test(int(d)); Cont | kil

Up | Dawn

A
_ Dx8048a24 <list_test Fi+148%: movl Sed:,0x8 (Beax) Back | Fud E
£1 DDD: Program Data [100 e || L/
FAle Edit View Program Data Help =1
():I*'Hst;‘ 2 Qa8
OSpiey _Hae | Rotte Set unaen
o o)) . Show/Hide selected detall)—————— i
2: *1i 3: *list-—>next | BUttOn Tlp
H (list *) Dx804ab7e self = 0x804abss
Data Window — nest = D><Bﬂ4ah98‘

The DDD Layout using Separate Windows
Here are the relatenbD resources:

separateDataWindow (class Separate) Resource
If* on’, the data window and the debugger console are realized in different top-level windows.
If ‘ off ' (default), the data window is attached to the debugger console.

separateSourceWindow(class Separate) Resource
If *on’, the source window and the debugger console are realized in different top-level win-
dows. If ‘off ' (default), the source window is attached to the debugger console.

By default, theppD tool bars are located on top of the window. If you prefer the tool bar being
located at the bottom, as ibDD 2.x and earlier, setEdit = Preferences = Startup =
Tool Bar Appearance = Bottom .

This is related to thetbolbarsAtBottom ' resource:

toolbarsAtBottom (class ToolbarsAtBottom) Resource
Whether source and data tool bars should be placed above source and data, respectively
(‘off ’, default), or below, as impD 2.X (‘on’).

64 Debugging with DDD

The bottom setting is only supported for separate tool bars—that is, you must either choose
separate windows or configure the tool bar to have neither images nor captioiz($ee 3.2.1
[Customizing the Tool Bar], page »1l

If you use stacked windows, you can choose whether there should be one tool bar or two tool
bars. By defaultppp uses two tool bars if you use separate windows and disable captions and
images, but you can also explicitly change the setting via this resource:

commonToolBar (class ToolBar) Resource
Whether the tool bar buttons should be shown in one common tool bar at the top of the
commonpDpD window (‘on’, default), or whether they should be placed in two separate tool
bars, one for data, and one for source operations, asin2.x (‘off ’).

You can also change the location of @tatus ling(seeSection 3.6 [Customizing], page 58

statusAtBottom (class StatusAtBottom) Resource

If “on’ (default), the status line is placed at the bottom of e source window. Ifoff
the status line is placed at the top of thiep source window (as ippD 1.X).

SeeSection 2.1.2 [Options], page ,lfor options to set these resources upar invocation.

3.6.4.3 Customizing Fonts

You can configure the basitbp fonts at run-time. Each font is specified using two members:

e The font family is an X font specifications, where the initigbtindry- ' specification may
be omitted, as well as any specification affamily. Thus, a pair family- weight’ usually
suffices.

e The font size is given as (resolution-independent) 1/10 points.

To specify fonts, selecEdit = Preferences = Fonts .

General | Source | Data | Startup ”W Helpers |
Default Font IEhe]vetica—bo]d Size|§90— Bmwse...l
Variahle Width I;"he]vetica—medium Sizelﬁsn_ Bmwse...l

Fixed Width Iﬂucidatypewriter—madium Size IESD Bmwse...l

0K Hesal | Help |

Setting Font Preferences

Chapter 3: The DDD Windows 65

The ‘Browse ' button opens a font selection program, where you can select fonts and attributes
interactively. Clicking quit " or ‘select ’in the font selector causes all non-default values to be
transferred to thepp font preferences panel.

The following fonts can be set using the preferences panel:
Default Font

The default pbp font to use for labels, menus, and buttons. Default is
‘helvetica-bold "

Variable Width

The variable widthppp font to use for help texts and messages. Default is
‘helvetica-medium "

Fixed Width
The fixed widthppD font to use for source code, the debugger console, text fields, data
displays, and the execution window. Defaultliscidatypewriter-medium ",
Changes in this panel will not take effect immediately. Instead, you can

e save options (using2dit = Save Options ') to make the change effective for futureD
sessions,

e or restartbpp (using File = Restart DDD’) to make it effective for the restartenipp
session.

After having made changes in the parmabp will automatically offer you to restart itself, such

that you can see the changes taking effect. Note that even after restarting, you still must save options
to make the changes permanent.

The ‘Reset ' button restores the most recently saved preferences.
Here are the resources related to font specifications:

defaultFont (class Font) Resource

The defaultbpp font to use for labels, menus, buttons, etc. The font is specified as an X font

spec, where the initiaFoundry specification may be omitted, as well as any specification
after Family.

Default value is helvetica-bold ",

To set the defaulbpp font to, say, helvetica medium ’, insert a line
Ddd*defaultFont: helvetica-medium

in your ‘~/.ddd/init 'file.

defaultFontSize (class FontSize) Resource
The size of the defauibpp font, in 1/10 points. This resource overrides any font size spec-

ification in the defaultFont ' resource (see above). The default valua2§ for a 12.0
point font.

variableWidthFont (class Font) Resource
The variable widtlbpp font to use for help texts and messages. The font is specified as an X

font spec, where the initidfoundry specification may be omitted, as well as any specification
after Family.

Default value is helvetica-medium-r ",
To set the variable widtbpp font family to, say, times ’, insert a line

66 Debugging with DDD

Ddd*fixedWidthFont: times-medium
in your ‘~/.ddd/init ’file.

variableWidthFontSize (class FontSize) Resource
The size of the variable widtbpp font, in 1/10 points. This resource overrides any font
size specification in thevariableWidthFont " resource (see above). The default value

is 120 for a 12.0 point font.

fixedWidthFont (class Font) Resource
The fixed widthppp font to use for source code, the debugger console, text fields, data
displays, and the execution window. The font is specified as an X font spec, where the initial
Foundry specification may be omitted, as well as any specification &ftetily.
Default value is tolucidatypewriter-medium "
To set the fixed widtlDD font family to, say, tourier ’, insert a line

Ddd*fixedWidthFont: courier-medium

in your ‘~/.ddd/init ’file.

fixedWidthFontSize (class FontSize) Resource
The size of the fixed widtpD font, in 1/10 points. This resource overrides any font size
specification in thefixedWidthFont ' resource (see above). The default valug2$e for
a 12.0 point font.

As all font size resources have the same class (and by default the same value), you can easily
change the defaulipp font size to, say, 9.0 points by inserting a line

Ddd*FontSize: 90
in your ‘~/.ddd/init " file.
Here’s how to specify the command to select fonts:

fontSelectCommand (class FontSelectCommand) Resource
A command to select from a list of fonts. The strir@ FONT@ replaced by the current
DDD default font; the string@TYPE@s replaced by a symbolic name of thp font to
edit. The program must either place the name of the selected font PRHdARYselection
or print the selected font on standard output. A typical value is:

Ddd*fontSelectCommand: xfontsel -print

SeeSection 2.1.2 [Options], page ,Ifor options to set these resources upab invocation.

3.6.4.4 Toggling Windows

In the default stacked window setting, you can turn the individuaib windows on and off
by toggling the respective items in theiew ' menu (seeSection 3.1.3 [View Menu], page %2
When using separate windows (seection 3.6.4.2 [Window Layout], page);¥ou can close the
individual windows via File = Close ’ or by closing them via your window manager.

Whether windows are opened or closed when staning is controlled by the following re-
sources, immediately tied to th€iew ' menu items:

Chapter 3: The DDD Windows 67

openDataWindow (class Window) Resource
If * off * (default), the data window is closed upon start-up.

openDebuggerConsolgclass Window) Resource
If ‘ off ’, the debugger console is closed upon start-up.

openSourceWindow (class Window) Resource
If ‘ off ’, the source window is closed upon start-up.

SeeSection 2.1.2 [Options], page ,lfor options to set these resources upar invocation.

3.6.4.5 Text Fields

TheDDD text fields can be customized using the following resources:

popdownHistorySize (class HistorySize) Resource
The maximum number of items to display in pop-down value histories. A valQdadfault)
means an unlimited number of values.

sortPopdownHistory (class SortPopdownHistory) Resource
If “on’ (default), items in the pop-down value histories are sorted alphabeticallpfflf;
most recently used values will appear at the top.

3.6.4.6 Icons

If you frequently switch betweenpp and other multi-window applications, you may like to

set ‘Edit = Preferences = General = Iconify all windows at once ', This way,
all ppp windows are iconified and deiconified as a group.
This is tied to the following resource:
grouplconify (class Grouplconify) Resource

If this is ‘on’, (un)iconifying anypbpD window causes all otherpp windows to (un)iconify
as well. Default isoff ’, meaning that eachpp window can be iconified on its own.

If you want to keepppp off your desktop during a longer computation, you may like to set
‘Edit = Preferences = General = Uniconifywhenready °'. This way, you can
iconify bpp while it is busy on a command (e.g. running a progrannp will automatically pop
up again after becoming ready (e.g. after the debugged program has stopped at a breakpoint). See
Section 6.4 [Program Stop], page, $ar a discussion.

Here is the related resource:

uniconifyWhenReady (class UniconifyWhenReady) Resource
If this is ‘on’ (default), theppp windows are uniconified automatically whenevass be-
comes ready. This way, you can iconifypp during some longer operation and have it
uniconify itself as soon as the program stops. Setting thieffo * leaves theppbD windows
iconified.

68 Debugging with DDD

3.6.4.7 Adding Buttons

You can extendpD with new buttons. Seé&ection 10.4 [Defining Buttons], page 14for
details.

3.6.4.8 More Customizations

You can change just about any label, color, keyboard mapping, etc. by changing resources from
the ‘Ddd’ application defaults file which comes with tleop source distribution. Here’s how it
works:

¢ Identify the appropriate resource in tHedd’ file.
e Copy the resource line to yourf.ddd/init ' file and change it at will.

SeeAppendix A [Application Defaults], page 15for details on the application-defaults file.

3.6.5 Debugger Settings

For most inferior debuggers, you can change their internal settings siitg ‘= Settings
Using the settings editor, you can determine whethet Games are to be demangled, how many
array elements are to print, and so on.

£2 DDD: Debugyer Settings
GDB Settings
I~ Autoloading of shared library symhbols ___________________________ BN
_| Stopping for shared library events _____________________________ j
Current Ci+ ing style . At ti lection based on =i j
Current source lanquage _ _ _ . _ _ f ic setting based on source file j
Range checking _ _ ___________________________________ auto j J
Type checking _ _____________________________________ auto j
Search path for source files _ _ _IE,-’amdﬁ nfbsstpsusriusersi/stpizellerid j
Search path for object files _ _ _ |§,-’us rfusers/ststlfzellerfhin: fusrfuser j
o | Y]
0K | Reset | Help

GDB Settings Panel (Excerpt)

The capabilities of the settings editor depend on the capabilities of your inferior debugger. Click-
ing on *?’ gives an an explanation on the specific item; thes documentation gives more details.

Use Edit = Undo’ to undo changes. Clicking orReset ’ restores the most recently saved
settings.

Some debugger settings are insensitive and cannot be changed, because doing so would endanger

DDD operation. See thgdblnitCommands ' and ‘dbxInitCommands ' resources for details.

Chapter 3: The DDD Windows

All debugger settings (except source and object paths) are savedmutbptions.

69

70

Debugging with DDD

Chapter 4: Navigating through the Code 71

4 Navigating through the Code

This chapter discusses how to access code from within.

4.1 Compiling for Debugging

In order to debug a program effectively, you need to generate debugging information when you
compile it. This debugging information is stored in the object file; it describes the data type of
each variable or function and the correspondence between source line numbers and addresses in the
executable code.

To request debugging information, specify thg * option when you run the compiler.

Many C compilers are unable to handle thg *and ‘-O’ options together. Using those compil-
ers, you cannot generate optimized executables containing debugging information.

aee, theaNu C compiler, supports-g ’ with or without ‘-O’, making it possible to debug
optimized code. We recommend that yalwaysuse g ' whenever you compile a program. You
may think your program is correct, but there is no sense in pushing your luck.

When you debug a program compiled witg “O ’, remember that the optimizer is rearranging
your code; the debugger shows you what is really there. Do not be too surprised when the execution
path does not exactly match your source file! An extreme example: if you define a variable, but
never use itppD never sees that variable—because the compiler optimizes it out of existence.

4.2 Opening Files

If you did not invokepDD specifying a program to be debugged, you can useRhe ‘' menu
to open programs, core dumps and sources.

4.2.1 Opening Programs

To open a program to be debugged, sel&ie’ = Open Program '.? Click on ‘Open’ to
open the program

In JDB, select File = Open Class '’ instead. This gives you a list of available classes to
choose from.

1 If you useppp to debug Perl or Python scripts, then this section does not apply.

2 with xpB and some»sx variants, the debugged program must be specified upon invocation and cannot
be changed at run time.

72 Debugging with DDD

£ DDD: Open Program [x]
Filter

File Filter 4|»;'u5r,"u59 refsts1/zeller/ddds/Tinus/ddd /4

Directorie Files

- ctest ik
Iddf.. caxtest |
ddd File List
Directory List ddd-2.99.1 -i586 - pc - linuz - gnulibc1
grahtest
stringify
userinfo
] /
=11~ = —_ [
Prograim

Program to be opened *>| rfusers/stst/zeller/ddd/1inux/ddds cxxtest

Open | Filter Cancel Help

Click here to open

Opening a program to be debugged

To re-open a recently debugged program or class, sélédet * = Open Recent ' and choose
a program or class from the list.

If no sources are found, Sé€e=ction 4.3.4 [Source Path], page far specifying source directo-
ries.

4.2.2 Opening Core Dumps

If a previous run of the program has crashed and you want to find out why, you cambave
examine itscore dump.?

To open a core dump for the program, selégte = Open Core Dump'. Click on ‘Open’
to open the core dump.

Before ‘Open Core Dump’, you should first useFile =- Open Program ' to specify the
program that generated the core dump and to load its symbol table.

4.2.3 Opening Source Files

To open a source file of the debugged program, sefiélet ©° = Open Source .
e UsingGDB, this gives you a list of the sources used for compiling your program.

e Using other inferior debuggers, this gives you a list of accessible source files, which may or
may not be related to your program.

Click on ‘Open’ to open the source file. Sé&=ction 4.3.4 [Source Path], page if4o sources
are found.

3 JpB, pyDB, and Perl do not support core dumps.

Chapter 4: Navigating through the Code 73

4.2.4 Filtering Files

When presenting files to be openad)p by default filters files when opening execution files,
core dumps, or source files, such that the selection shows only suitable files. This requipesthat
opens each file, which may take time. Sgection 4.4.6 [Customizing File Filtering], page, iB
you want to turn off this feature.

4.3 Looking up Items

As soon as the source of the debugged program is availablesotitee windowdisplays its
current source text. (s€&=ction 4.3.4 [Source Path], page if4a source text cannot be found.)

In the source window, you can lookup and examine function and variable definitions as well as
search for arbitrary occurrences in the source text.

4.3.1 Looking up Definitions

If you wish to lookup a specific function or variable definition whose name is visible in the
source text, click withmouse button bn the function or variable name. The name is copied to the
argument field. Change the name if desired and click onltbekup ’ button to find its definition.

Press Button 3 on Item

ff Test disambiguation
void 1ist_test{double d)

i
N intidin:
3 Print 1ist_test | Showlitem Value
ff———— Display 1ist_test ———
void referenc : Date*&
Print #11st_test

date = *¢ . .

delete d: Display *1ist_test

date_ptr ‘whatis 19st_test <+ Show item Type
1y Lookup 1ist_test = Lookup Item’s Definition in Source Code
void array_te Break at 1ist_test{——————— Setand Delete Breakpoint at Item
: Clear at 1ist_test

A Lookup definition of the selected item

The Source Popup Menu

As a faster alternative, you can simply pressuse button 8n the function name and select the
‘Lookup ' item from the source popup menu.

As an even faster alternative, you can also double-click on a function call (an identifier followed
by a ‘(' character) to lookup the function definition.

74 Debugging with DDD

If a source file is not found, Se®ection 4.3.4 [Source Path], page, far specifying source
directories.

4.3.2 Textual Search

If the item you wish to search is visible in the source text, click withuse button bn it.
The identifier is copied to the argument field. Click on tiénd >> ’ button to find following
occurrences and ofrind >> = Find << () ’to find previous occurrences.

By default,pDD finds only complete words. To search for arbitrary substrings, change the value
of the ‘Source = Find Words Only ' option.

4.3.3 Looking up Previous Locations

After looking up a location, uséedit = Undo’ (or the ‘Undo’ button on the command tool)
to go back to the original locationsEdit = Redo’ brings you back again to the location you
looked for.

Argument for command buttons on the right Click here to find further occurrences of ‘tree_test’

Click here to lookup ‘tree_test’

£ DDD: fusriusersfsts1izellerfddd/dddfcxxtest.C
File FEdit View Program 3tatus Source Help
0 I tree_test el
Lookup Finds=» Break Watch Frint Dizplay”
\ \ Y
ff Simple binary tree =
Vot EEEMER) < DODEY
] Run
Enabled Breakpoint —————=@ Tree *tree = 0;
tree = new Tree(?, "ada"l; ff Byron Lovelace Interrupt
tree—:left = new Tree(1, "Grace"); FF Murray Hopper ;
tree—:left—:Teft = new Tree(3, "Tudy"): ff Clapp MM
Execution Position ————=# tree—:left—>right = new Tree(f, "Kathleen"); // McHulty Met | Mexti|{ |
tree—>right = new Treef{1, "Mildred"); // Koss -
Until | Fnish
tree—rdate.set(Tue, 293, 11, 1334);
tree—>date.setiWed, 30, 11, 19943; cont |t |
Up | Down
i int ———— delete tree;
Disabled Breakpoint %}@ | Foa
Y Eclit | Make
£
Program Counter ——————sp [x80488:9 <tree_test_ Fv+121>: pushl $0x80436a7 ﬁ
0x80488ee <tree_test_ Fy+126:: pushl $0=E p
A tree_test = {woid (33 0xB048870 <tree_testivoid): -F

The Source Window

4.3.4 Specifying Source Directories

Executable programs sometimes do not record the directories of the source files from which
they were compiled, just the names. Even when they do, the directories could be moved between
the compilation and your debugging session.

Chapter 4: Navigating through the Code 75

Here's howaDB accesses source files; other inferior debuggers have similar methods.

GDB has a list of directories to search for source files; this is calleddhee path. Each time
GDB wants a source file, it tries all the directories in the list, in the order they are present in the list,
until it finds a file with the desired name. Note that the executable search pathused for this
purpose. Neither is the current working directory, unless it happens to be in the source path.

If apB cannot find a source file in the source path, and the object program records a directory,
GDB tries that directory too. If the source path is empty, and there is no record of the compilation
directory,GDB looks in the current directory as a last resort.

To specify a source path for your inferior debugger, usdit = Debugger Settings
(seeSection 3.6.5 [Debugger Settings], pageattel search for appropriate entries (ins, this is
‘Search path for source files .

If * Debugger Settings ' has no suitable entry, you can also specify a source path for the
inferior debugger when invokingpp. SeeSection 2.1.4 [Inferior Debugger Options], page fot
details.

When using DB, you can set th€ELASSPATHenvironment variable to specify directories where
JDB (andppD) should search for classes.

If DDD does not find a source file for any reason, check the following issues:

e In order to debug a program effectively, you need to generate debugging information when
you compile it. Without debugging information, the inferior debugger will be unable to locate
the source code. To request debugging information, specify-gheoption when you run the
compiler. Seéection 4.1 [Compiling for Debugging], page, far details.

e You may need to tell your inferior debugger where the source code files ar&e8gen 4.3.4
[Source Path], page 7for details.

Using ¢DB, you can also create a locagdbinit ' file that contains a linadirectory
path. Here,path is a colon-separated list of source paths.

4.4 Customizing the Source Window

The source window can be customized in a number of ways, most of them accesdeditvia *
= Preferences = Source .

76 Debugging with DDD

£3 DDD Preferences E
General || source pata | Starup | Fonts | Hepers |
Show Position and Breakpoints <~ as Glyphs . as Text Characters
Tool buttons location “ Command Tool -- Source Window
Refer 10 Program Sources 4% by Path Name < by Base Hame
Find J7 Words Only |7 Case Sensitive
Cache J7 Source Files |7 Machine Code
1 Display Source Line Numbers
8 1] 4
| | | JT |
Tah Width Source | i Machine Code |
0k | Hagal | Help |

Source Preferences

4.4.1 Customizing Glyphs

In the source text, the current execution position and breakpoints are indicated by symbols
(glyphs). As an alternativeppD can also indicate these positions using text characters. If you
wish to disable glyphs, setEdit = Preferences = Source = Show Position and
Breakpoints = as Text Characters ' option. This also make®DpD run slightly faster,
especially when scrolling.

This setting is tied to this resource:

displayGlyphs (class DisplayGlyphs) Resource
If this is ‘on’, the current execution position and breakpoints are displayed as glyphs; other-
wise, they are shown through characters in the text. The defaudhis SeeSection 2.1.2
[Options], page 16for the “-glyphs "and ‘--no-glyphs ' options.

You can further control glyphs using the following resources:

cacheGlyphimages(class CacheMachineCode) Resource
Whether to cache (share) glyph imagem() or not (‘off ’). Caching glyph images requires
less X resources, but has been reported to fail with Motif 2.1 on XFree86 servers. Default is
‘off *for Motif 2.1 or later onaNuU/Linux machines, andon’ otherwise.

glyphUpdateDelay (class GlyphUpdateDelay) Resource
A delay (in ms) that says how much time to wait before updating glyphs while scrolling the
source text. A small value results in glyphs being scrolled with the text, a large value disables
glyphs while scrolling and makes scrolling faster. Defali.

maxGlyphs (class MaxGlyphs) Resource
The maximum number of glyphs to be displayed (defali?). Raising this value causes
more glyphs to be allocated, possibly wasting resources that are never needed.

Chapter 4: Navigating through the Code 77

4.4.2 Customizing Searching

Searching in the source text (section 4.3.2 [Textual Search], page ®lcontrolled by these
resources, changed via tHedurce ' menu:

findCaseSensitive(class FindCaseSensitive) Resource
If this is ‘on’ (default), the Find * commands are case-sensitive. Otherwise, occurrences
are found regardless of case.

findWordsOnly (class FindWordsOnly) Resource
If this is ‘on’ (default), the Find ' commands find complete words only. Otherwise, arbi-
trary occurrences are found.

4.4.3 Customizing Source Appearance

You can haveppp show line numbers within the source window. UsEdit =
Preferences = Source = Display Source Line Numbers '

displayLineNumbers (class DisplayLineNumbers) Resource
If this is ‘on’, lines in the source text are prefixed with their respective line number. The
default is off .

You can instructbpDp to indent the source code, leaving more room for breakpoints and
execution glyphs. This is done using thEdit =- Preferences = Source = Source
indentation ' slider. The default value i8 for no indentation at all.

indentSource (class Indent) Resource
The number of columns to indent the source code, such that there is enough place to display
breakpoint locations. Defaul@.

By default,pDD uses a minimum indentation for script languages.

indentScript (class Indent) Resource
The minimum indentation for script languages, such as Perl and Python. Dédfault:

The maximum width of line numbers is controlled by this resource.

lineNumberWidth (class LineNumberWidth) Resource
The number of columns to use for line numbers (if displaying line numbers is enabled). Line
numbers wider than this value extend into the breakpoint space. Default:

If your source code uses a tab width different fr8r{the default), you can set an alternate width
using the Edit = Preferences = Source = Tab width ’slider.

tabWidth (class TabWidth) Resource
The tab width used in the source window (defa8l:

78 Debugging with DDD

4.4.4 Customizing Source Scrolling

These resources control when the source window is scrolled:

linesAboveCursor (class LinesAboveCursor) Resource
The minimum number of lines to show before the current location. Defafilt is

linesBelowCursor (class LinesBelowCursor) Resource
The minimum number of lines to show after the current location. Defa@lt is

4.4.5 Customizing Source Lookup

SomeDBX andXDB variants do not properly handle paths in source file specifications. If you
want the inferior debugger to refer to source locations by source base names only, urisditthe *
= Preferences = Source = Referto Program Sources by full path name ’
option.

This is related to the following resource:

useSourcePath(class UseSourcePath) Resource
If this is ‘off ’ (default), the inferior debugger refers to source code locations only by their
base names. If this i®h’ (default), bbD uses the full source code paths.

By default, DbD caches source files in memory. This is convenient for remote debugging,
since remote file access may be slow. If you want to reduce memory usage, ungedithe=-
Preferences = Source = Cache source files " option.

This is related to the following resource:

cacheSourceFilegqclass CacheSourceFiles) Resource
Whether to cache source file®(i’, default) or not (bff "). Caching source files requires
more memory, but makespp run faster.

4.4.6 Customizing File Filtering

You can control whethenpp should filter files to be opened.

filterFiles (class FilterFiles) Resource
If this is ‘on’ (default), DDD filters files when opening execution files, core dumps, or source
files, such that the selection shows only suitable files. This requiresititabpens each file,
which may take time. If this isoff ’, bDD always presents all available files.

Chapter 5: Stopping the Program 79

5 Stopping the Program

The principal purposes of using a debugger are so that you can stop your program before it
terminates; or so that, if your program runs into trouble, you can investigate and find out why.

Inside DD, your program may stop for any of several reasons, such as a signal, a breakpoint,
or reaching a new line aftermpp command such asStep ’. You may then examine and change
variables, set new breakpoints or remove old ones, and then continue execution.

The inferior debuggers supported byD support two mechanisms for stopping a program upon
specific events:

e A breakpoint makes your program stop whenever a certain point in the program is reached.
For each breakpoint, you can add conditions to control in finer detail whether your program
stops. Typically, breakpoints are set before running the program.

e A watchpoint is a special breakpoint that stops your program when the value of an expression
changes.

5.1 Breakpoints

5.1.1 Setting Breakpoints

You can set breakpoints by location or by name.

5.1.1.1 Setting Breakpoints by Location

Breakpoints are set at a specific location in the program.
If the source line is visible, click witmouse button bn the left of the source line and then on
the ‘Break ' button.

As a faster alternative, you can simply pressuse button ®n the left of the source line and
select the Set Breakpoint ' item from the line popup menu.

1ist

1ist—rnext

Press Button 3 on Line ——] i e e
Fet Breakpoint

Set Temporary Breakpoint | .
Continue Until Here

Set Breakpoint at Line

i set Execution Position

A 5et a hreakpoint at the selected position

The Line Popup Menu

As an even faster alternative, you can simply double-click on the left of the source line to set a
breakpoint.

80 Debugging with DDD

As yet another alternative, you can seléatirce = Breakpoints . Click on the ‘Break ’
button and enter the location.

(If you find this number of alternatives confusing, be aware thab users fall into three cate-
gories, which must all be supportetllovice usergxploreppp and may prefer to use one single
mouse button Advanced userknow how to use shortcuts and prefer popup meritxgerienced
usersprefer the command line interface.)

Breakpoints are indicated by a plain stop sign, ortas,'wheren is the breakpoint number. A
greyed out stop sign (or_n_’) indicates a disabled breakpoint. A stop sign with a question mark
(or ‘?n?’) indicates a conditional breakpoint or a breakpoint with an ignore count set.

If you set a breakpoint by mistake, udedit = Undo’ to delete it again.

5.1.1.2 Setting Breakpoints by Name

If the function name is visible, click witimouse button bn the function name. The function
name is then copied to the argument field. Click on Beak ' button to set a breakpoint there.

As a shorter alternative, you can simply pressuse button ®n the function name and select
the ‘Break at ' item from the popup menu.

As yet another alternative, you can click ddréak.. '’ from the Breakpoint editor (invoked
through Source = Breakpoints ') and enter the function name.

5.1.1.3 Setting Regexp Breakpoints

Using GDB, You can also set a breakpoint on all functions that match a given stBrgak =
Set Breakpoints at Regexp () ' sets a breakpoint on all functions whose name matches the
regular expressiogiven in ‘() '. Here are some examples:

To set a breakpoint on every function that starts wkhi; set /() ’to ‘*Xm.
To set a breakpoint on every member of cld3ate ’, set () ’to ‘~“Date:: .
To set a breakpoint on every function whose name contaiios*’, set() 'to‘_fun .

To set a breakpoint on every function that ends itest ’, set’() 'to‘_test$

5.1.2 Deleting Breakpoints

To delete a visible breakpoint, click wittmouse button bn the breakpoint. The breakpoint
location is copied to the argument field. Click on tl&ear ' button to delete all breakpoints
there.

If the function name is visible, click witimouse button bn the function name. The function
name is copied to the argument field. Click on tBéear ' button to clear all breakpoints there.

As a faster alternative, you can simply pressuse button ®n the breakpoint and select the
‘Delete Breakpoint " item from the popup menu.

As yet another alternative, you can select the breakpoint and clickelete ’in the Break-
point editor (invoked throughSource =- Breakpoints).

As an even faster alternative, you can simply double-click on the breakpoint while hdiihg

Chapter 5: Stopping the Program 81

5.1.3 Disabling Breakpoints

Rather than deleting a breakpoint or watchpoint, you might preféistle it. This makes the
breakpoint inoperative as if it had been deleted, but remembers the information on the breakpoint
so that you carnable it again later:

To disable a breakpoint, presaouse button n the breakpoint symbol and select the
‘Disable Breakpoint " item from the breakpoint popup menu. To enable it again, select
‘Enable Breakpoint

/i Dereference this
Date *=date_ptrs[4];
Press Button 3 on Breakpoint ——% date_ntrs[0] = new Date{Thu, 1,

Properties... Data(Fri. 15 Edit Properties

< Disable Breakpoint- 1Date(Sat, 24 pisaple Breakpoint
Delete Breakpoint

3et Execution Position 4: kil

ﬁreakpnint 3 (enabled; delete when hit)

The Breakpoint Popup Menu

As an alternative, you can select the breakpoint and clicklnsable ' or ‘Enable ’in the
Breakpoint editor (invoked througlsburce = Breakpoints .

Disabled breakpoints are indicated by a grey stop sign, ar *, where n is the breakpoint
number.

The ‘Disable Breakpoint "item is also accessible via th€tear ' button. Just press and
hold mouse button bn the button to get a popup menu.

5.1.4 Temporary Breakpoints

A temporary breakpoint is immediately deleted as soon as it is reached.
To set a temporary breakpoint, pressuse button 8n the left of the source line and select the

‘Set Temporary Breakpoint " item from the popup menu.
As a faster alternative, you can simply double-click on the left of the source line while holding
(CtrD.

Temporary breakpoints are convenient to make the program continue up to a specific location:
just set the temporary breakpoint at this location and continue execution.

The ‘Continue Until Here "item from the popup menu sets a temporary breakpoint on the
left of the source line and immediately continues execution. Execution stops when the temporary
breakpoint is reached.

L jpB does not support breakpoint disabling.
2 jpB does not support temporary breakpoints.

82 Debugging with DDD

The ‘Set Temporary Breakpoint "and ‘Continue Until Here "items are also acces-
sible via the Break ’ button. Just press and holdouse button bn the button to get a popup
menu.

5.1.5 Editing Breakpoint Properties

You can change all properties of a breakpoint by presgiogise button ®n the breakpoint
symbol and selectProperties ’ from the breakpoint popup menu. This will pop up a dialog
showing the current properties of the selected breakpoint.

Disable Breakpoint

£: DDD: Properties: Breakpoint 1

Breakpoint 1 H &

Logkup Enmble Disable Temp Delets

Edit Breakpoint Condition Condition HTwodim < 10
lgnore Count | 1
Edit Ignore Count 4 A ~| -
Commands Record | Faui | Edit »> |

Close | Help |

Breakpoint Properties

As an even faster alternative, you can simply double-click on the breakpoint.

Click on ‘Lookup ' to move the cursor to the breakpoint’s location.

Click on ‘Enable '’ to enable the breakpoint.
Click on ‘Disable ' to disable the breakpoint.
Click on ‘Temp to make the breakpoint temporaty.

Click on ‘Delete ’to delete the breakpoint.

5.1.6 Breakpoint Conditions

The simplest sort of breakpoint breaks every time your program reaches a specified place. You

can also specify aondition for a breakpoint. A condition is just a Boolean expression in your

3 &ps has no way to make a temporary breakpoint non-temporary again.

Chapter 5: Stopping the Program 83

programming language. A breakpoint with a condition evaluates the expression each time your
program reaches it, and your program stops only if the condititmiés

This is the converse of using assertions for program validation; in that situation, you want to
stop when the assertion is violated—that is, when the condition is false. In C, if you want to test
an assertion expressed by the conditiesertion, you should set the conditioh 4ssertion’ on the
appropriate breakpoint.

Break conditions can have side effects, and may even call functions in your program. This can
be useful, for example, to activate functions that log program progress, or to use your own print
functions to format special data structures. The effects are completely predictable unless there is
another enabled breakpoint at the same address. (In thattaasenight see the other breakpoint
first and stop your program without checking the condition of this one.)

Note that breakpoint commands are usually more convenient and flexible for the purpose of
performing side effects when a breakpoint is reached. SS&¢on 5.1.8 [Breakpoint Commands],
page 83for details.

5.1.7 Breakpoint Ignore Counts

A special case of a breakpoint condition is to stop only when the breakpoint has been reached a
certain number of times. This is so useful that there is a special way to do it, usiimthe count
of the breakpoint. Every breakpoint has an ignore count, which is an integer. Most of the time, the
ignore count is zero, and therefore has no effect. But if your program reaches a breakpoint whose
ignore count is positive, then instead of stopping, it just decrements the ignore count by one and
continues. As a result, if the ignore count valua,ishe breakpoint does not stop the neximes
your program reaches it.

In the field 1gnore Count '’ of the ‘Breakpoint Properties " panel, you can specify the
breakpoint ignore courit.

If a breakpoint has a positive ignore count and a condition, the condition is not checked. Once
the ignore count reaches zema)bd resumes checking the condition.

5.1.8 Breakpoint Commands

You can give any breakpoint (or watchpoint) a seriesnb commands to execute when your
program stops due to that breakpoint. For example, you might want to print the values of certain
expressions, or enable other breakpoints.

Using the Commands buttons of the Breakpoint Properties " panel, you can edit com-
mands to be executed when the breakpoint is hit.

To edit breakpoint commands, click ogdit >> ' and enter the commands in the commands
editor. When done with editing, click ofetlit << ’to close the commands editor.

Using GDB, you can alsaecord a command sequence to be executed. To record a command
sequence, follow these steps:

1. Click on ‘Record ' to begin the recording of the breakpoint commands.

4 jpB, Perl and somesx variants do not support breakpoint ignore counts.
® jpB, PYDB, and somesx variants do not support breakpoint commands.

84 Debugging with DDD

2. Now interact wittbpp. While recordingppb does not execute commands, but simply records
them to be executed when the breakpoint is hit. The recorded debugger commands are shown
in the debugger console.

3. To stop the recording, click ofehd’ or enter ‘end’ at the GbB prompt. Tocancel the record-
ing, click on ‘Interrupt ' or pressESQC.

4. You can edit the breakpoint commands just recorded u&dig >>

5.1.9 Moving and Copying Breakpoints

To move a breakpoint to a different location, pressuse button bn the stop sign and drag it
to the desired locatioh.This is equivalent to deleting the breakpoint at the old location and setting
a breakpoint at the new location. The new breakpoint inherits all properties of the old breakpoint,
except the breakpoint number.

To copy a breakpoint to a new location, préssift) while dragging.

5.1.10 Looking up Breakpoints

If you wish to lookup a specific breakpoint, seleBburce =- Breakpoints = Lookup .
After selecting a breakpoint from the list and clicking theokup ’ button, the breakpoint location
is displayed.

As an alternative, you can entétr’ in the argument field, where is the breakpoint number,
and click on the Lookup ' button to find its definition.

5.1.11 Editing all Breakpoints

To view and edit all breakpoints at once, sel&urce = Breakpoints ’. This will popup
the Breakpoint Editor which displays the state of all breakpoints.

5 When glyphs are disabled (sé&ction 4.4 [Customizing Source], page),7breakpoints cannot be
dragged. Delete and set breakpoints instead.

Chapter 5: Stopping the Program 85

£2 DDD: Breakpoint and Watchpoint Editor

Edit Properties — Lty © & @

Props.. Lookup Break.. Watch. Frnt Enable Disable Delete

Condition

Ignore Count

Num Type Disp Enb Address What

oy 0x02048h2b in array
<=top only if twodim < 10

bhreakpoint already hit 1 time

Sqgnore next 1 hits

Commands - info locals
3 watchpoint keep v twodim
5 breakpoint del v 0Ox08048bc0 in array_test() at cwxtest.C:1d
& breakpoint keep n 0x08048<338 in array_test() at cuxtest.C:134

The Breakpoint Editor

In the breakpoint editor, you can select individual breakpoints by clicking on them. Pressing
while clicking toggles the selection. To edit the properties of all selected breakpoints, click on
‘Props .

5.1.12 Hardware-Assisted Breakpoints

Using GDB, a few more commands related to breakpoints can be invoked through the debugger
console:

hbreak position
Sets a hardware-assisted breakpoinp@tition. This command requires hardware
support and some target hardware may not have this support. The main purpose of this
is EPROM/ROM code debugging, so you can set a breakpoint at an instruction without
changing the instruction.

thbreak pos
Set a temporary hardware-assisted breakpoipbat

Seesection “Setting Breakpoints” iDebugging with GDB, for details.

l=

5.2 Watchpoints

You can make the program stop as soon as some variable value changes, or when some variable
is read or written. This is callegktting a watchpoint on a variable.”

Watchpoints have much in common with breakpoints: in particular, you can enable and disable
them. You can also set conditions, ignore counts, and commands to be executed when a watched
variable changes its value.

7 Watchpoints are available imbs and somepsx variants only. Inxps, a similar feature is available via
XDB assertions; see thexps documentation for details.

86 Debugging with DDD

Please note: on architectures without special watchpoint support, watchpoints currently make
the program execute two orders of magnitude more slowly. This is so because the inferior debugger
must interrupt the program after each machine instruction in order to examine whether the watched
value has changed. However, this delay can be well worth it to catch errors when you have no clue
what part of your program is the culprit.

5.2.1 Setting Watchpoints

If the variable name is visible, click witmouse button bn the variable name. The variable
name is copied to the argument field. Otherwise, enter the variable name in the argument field.
Click on the Watch’ button to set a watchpoint there.

Using GDB, you can set different types of watchpoints. Click and holguse button bn the
‘Watch’ button to get a menu.

5.2.2 Editing Watchpoint Properties

To change the properties of a watchpoint, enter the name of the watched variable in the ar-
gument field. Click and holanouse button bn the Watch’ button and selectWatchpoint
Properties .

The Watchpoint Properties panel has the same functionality as the Breakpoint Properties panel
(seeSection 5.1.5 [Editing Breakpoint Properties], pagk &% an additional feature, you can click
on ‘Print ' to see the current value of a watched variable.

5.2.3 Editing all Watchpoints

To view and edit all watchpoints at once, selddata = Watchpoints . This will popup
the Watchpoint Editor which displays the state of all watchpoints.

The Watchpoint Editor has the same functionality as the Breakpoint EditoS¢sgen 5.1.11
[Editing all Breakpoints], page §4 As an additional feature, you can click darint '’ to see the
current value of a watched variable.

5.2.4 Deleting Watchpoints

To delete a watchpoint, enter the name of the watched variable in the argument field and click
the ‘Unwatch ’ button.

5.3 Interrupting

If the program is already running (s€gapter 6 [Running], page ®9ou can interrupt it any
time by clicking the Interrupt " button or typing(ESC in abpb window? Using GDB, this is
equivalent to sending 8IGINT (Interrupt) signal.

‘Interrupt ’and (ESC also interrupt a running debugger command, such as printing data.

8 |f is not bound toCopy’ (seeSection 3.1.11.2 [Customizing the Edit Menu], pag}, ¥8u can
also usgCtri+C) to interrupt the running program.

Chapter 5: Stopping the Program 87

5.4 Stopping X Programs

If your program is a modal X applicatiompbD may interrupt it while it has grabbed the mouse
pointer, making further interaction impossible—your X display will be unresponsive to any user
actions.

By default,ppD will check after each interaction whether the pointer is grabbed. If the pointer is
grabbedppp will continue the debugged program such that you can continue to use your X display.

This is how this feature works: When the program stapsp checks for input events such as
keyboard or mouse interaction. bbp does not receive any event within the next 5 seconds
checks whether the mouse pointer is grabbed by attempting to grab and ungrab it. If this attempt
fails, thenppp considers the pointer grabbed.

Unfortunately,bpD cannot determine the program that grabbed the pointer—it may be the de-
bugged program, or another program. Consequently, you have another 10 seconds to cancel contin-
uation beforebpD continues the program automatically.

There is one situation where this fails: if you lock your X display whilep is running, then
pDD Will consider a resulting pointer grab as a result of running the program—and automatically
continue execution of the debugged program. Consequently, you can turn off this feat@éivvia ‘
= Preferences = General = Continue Automatically when Mouse Pointer
is Frozen '’

5.4.1 Customizing Grab Checking

The grab checks are controlled by the following resources:

checkGrabs (class CheckGrabs) Resource
If this is ‘on’ (default), bDD will check after each interaction whether the pointer is grabbed.
If this is so,pDD will automatically continue execution of debugged program.

checkGrabDelay (class CheckGrabDelay) Resource
The time to wait (in ms) after a debugger command before checking for a grabbed pointer. If
DDD Sees some pointer event within this delay, the pointer cannot be grabbed and an explicit
check for a grabbed pointer is unnecessary. Defa®@0 , or 5 seconds.

grabAction (class grabAction) Resource
The action to take after having detected a grabbed mouse pointer. This is a list of newline-
separated commands. Defaulicent , meaning to continue the debuggee. Other possible
choices includéill (killing the debuggee) oquit (exiting DDD).

grabActionDelay (class grabActionDelay) Resource
The time to wait (in ms) before taking an action due to having detected a grabbed pointer.
During this delay, a working dialog pops up telling the user about imminent execution of the
grab action (see thgtabAction ’resource, above). If the pointer grab is released within
this delay, the working dialog pops down and no action is taken. This is done to exclude
pointer grabs from sources other than the debugged program (inclodiny Default is
10000, or 10 seconds.

88

Debugging with DDD

Chapter 6: Running the Program 89

6 Running the Program

You may start the debugged program with its arguments, if any, in an environment of your

choice. You may redirect your program’s input and output, debug an already running process, or
kill a child process.

6.1 Starting Program Execution

To start execution of the debugged program, selBcogram = Run’. You will then be
prompted for the arguments to pass to your program. You can either select from a list of previ-
ously used arguments or enter own arguments in the text field. Afterwards, preButhéutton
to start execution with the selected arguments.

£ DDD: Run Program | %]
Arguments

Empty Argument List

:cunfiguratinn
—indent 45
—trace —separate—windows cxxtest

Other Arguments

Click here to select

Run with Arguments

Program Arguments | ~display elwis.graceland.edu:0.

Click here to run | R ﬂl ﬂl

Starting a Program with Arguments

To run your program again, with the same arguments, seRrcigram =- Run Again ’ or
press theRun' button on the command tool. You may also entan , followed by arguments at
the debugger prompt instead.

When you click on Run’, your program begins to execute immediately. Sgepter 5 [Stop-
ping], page 79for a discussion of how to arrange for your program to stop. Once your program has
stopped, you may call functions in your program to examine dataC8epter 7 [Examining Data],
page 103for details.

If the modification time of your symbol file has changed since the lastdineread its symbols,
GDB discards its symbol table, and reads it again. When it doesdbis,andppp try to retain
your current debugger state, such as breakpoints.

90 Debugging with DDD

6.1.1 Your Program’s Arguments

The arguments to your program are specified by the arguments otithé command, as com-
posed in Program = Run’.

In GDB, the arguments are passed to a shell, which expands wildcard characters and performs
redirection of I/O, and thence to your program. Y&HKELL environment variable (if it exists)
specifies what shettps uses. If you do not definBHELL, GbB uses /bin/sh .

If you use another inferior debugger, the exact semantics on how the arguments are interpreted
depend on the inferior debugger you are using. Normally, the shell is used to pass the arguments,
so that you may use normal conventions (such as wildcard expansion or variable substitution) in
describing the arguments.

6.1.2 Your Program’s Environment

Your program normally inherits its environment from the inferior debugger, which again inherits
it from DDD, which again inherits it from its parent process (typically the shell or desktop).

In GpB, you can use the commandset environment and unset environment
to change parts of the environment that affect your program. s®e&on “Your Program’s
Environment” inDebugging with GDB, for details.

The following environment variables are setibyp:

DDD Set to a string indicating thepb version. By testing whethddDDis set, a debuggee
(or inferior debugger) can determine whether it was invokeody.

TERM Set to dumb’, the ppD terminal type. This is set for the inferior debugger ohly.
TERMCAP Setto ” (none), theoDD terminal capabilities.
PAGER Setto tat ', the preferrecdbpp pager.

The inferior debugger, in turn, might also set or unset some environment variables.

6.1.3 Your Program’s Working Directory

Your program normally inherits its working directory from the inferior debugger, which again
inherits it fromppD, which again inherits it from its parent process (typically the shell or desktop).

You can change the working directory of the inferior debugger Wde' = Change
Directory ' or viathe ‘cd’ command of the inferior debugger.

6.1.4 Your Program’s Input and Output

By default, the program you run undepb does input and output to the debugger console.
Normally, you can redirect your program’s input and/or output usingl redirections with the
arguments—that is, additional arguments likeinput’ or ‘> output’. You can enter these shell
redirections just like other arguments (s&ection 6.1.1 [Arguments], page)20

L If the debuggee runs in a separate execution window, the debuddeRValue is set according to the
‘termType ’resource; Se&ection 6.2.1 [Customizing the Execution Window], pageféPdetails.

Chapter 6: Running the Program 91

Warning: While input and output redirection work, you cannot use pipes to pass the output of the
program you are debugging to another program; if you attemptitinis, may wind up debugging
the wrong program. Se®gection 6.3 [Attaching to a Process], page fér an alternative.

If command output is sent to the debugger console, it is impossibledor to distinguish
between the output of the debugged program and the output of the inferior debugger.

Program output that confusesp includes:
e Primary debugger prompts (e.ggtlb) ’, ‘(dbx) ’or‘(ladebug))
e Secondary debugger prompts (e¥)*
e Confirmation prompts (e.g(y orn))
e Prompts for more output (e.gPtess RETURN to continue)
e Display output (e.g.$pc = 0x1234)

If your program outputs any of these strings, you may encounter problemswitimistaking
them for debugger output. These problems can easily be avoided by redirecting program 1/O, for
instance to the separate execution window {&e&ion 6.2 [Using the Execution Window], pagg.91

If the inferior debugger changes the defauity settings, for instance througlstty command
in its initialization file, bbD may also become confused. The same applies to debugged programs
which change the defaultry settings.

The behavior of the debugger console can be controlled using the following resource:

lineBufferedConsole (class LineBuffered) Resource
If this is ‘on’ (default), each line from the inferior debugger is output on each own, such that
the final line is placed at the bottom of the debugger console. If thisfis’, all lines are
output as a whole. This is faster, but results in a random position of the last line.

6.2 Using the Execution Window

By default, input and output of your program go to the debugger console. As an alternative,
can also invoke anaxecution window, where the program terminal input and output is shéwn.

To activate the execution window, seleBrogram =- Run in Execution Window

The execution window is opened automatically as soon as you start the debugged program.
While the execution window is active,pD redirects the standard input, output, and error streams
of your program to the execution window. Note that the devidev/tty ' still refers to the
debugger consoleotthe execution window.

You can override theDD stream redirection by giving alternate redirection operations as argu-
ments. For instance, to have your program read ffiden but to write to the execution window,
invoke your program with< file’ as argument. Likewise, to redirect the standard error output to
the debugger console, usa>/dev/tty ' (assuming the inferior debugger and/or yowix shell
support standard error redirection).

2 The execution window is not available inz.

92 Debugging with DDD

6.2.1 Customizing the Execution Window

You can customize thepb execution window and use a differemnty command. The command
is set by Edit = Preferences = Helpers = Execution Window :

termCommand (class TermCommand) Resource
The command to invoke for the execution window—+ay emulator that shows the in-
put/output of the debugged program. A Bourne shell command to run in the separaie
appended to this string. The strin@FONT@ replaced by the name of the fixed width font
used byppD. A simple value is

Ddd*termCommand: xterm -fn @FONT@ -e /bin/sh -c

You can also set the terminal type:

termType (class TermType) Resource
The terminal type provided by theermCommand’ resource—that is, the value of tiE€RM
environment variable to be passed to the debugged program. Defdeitn’ .

Whether the execution window is active or not, as setRrpgram = Run in Execution
Window’, is saved using this resource:

separateExecWindow(class Separate) Resource
If“on’, the debugged program is executed in a separate execution windaff. If(default),
the debugged program is executed in the console window.

6.3 Attaching to a Running Process

If the debugged program is already running in some process, youttah to this process
(instead of starting a new one witRtn’).3

To attachpDD to a process, selecFile =- Attach to Process . You can now choose
from a list of processes. Then, press tAgach ' button to attach to the specified process.

3 JpB, PyDB, and Perl do not support attaching the debugger to running processes.

Chapter 6: Running the Program 93

£2 DDD: Attach to Process E3
Processes
PID TT STAT TIME COMMAND ps output
Selected process 343 pe 0:00 Jamds/infbsstpfusriuse
26758 pl1 & 0:00 fbindbash
Y] I -
Click to attach —Attach Update Cancel Help

Selecting a Process to Attach

The first thingppD does after arranging to debug the specified process is to stop it. You can
examine and modify an attached process with allib® commands that are ordinarily available
when you start processes witRun'. You can insert breakpoints; you can step and continue; you
can modify storage. If you would rather the process continue running, you magaeérue '’
after attachingpp to the process.

When using Attach to Process 7, you should first useOpen Program ’ to specify the
program running in the process and load its symbol table.

When you have finished debugging the attached process, you can uséléhe=> Detach
Process '’ to release it fromppD control. Detaching the process continues its execution. After
‘Detach Process ', that process antdhbbp become completely independent once more, and you
are ready to attach another process or start one Witim",

You can customize the list of processes shown by defining an alternate command to list pro-
cesses. Sedcdit = Preferences = Helpers = ListProcesses '; See Section 6.3.1
[Customizing Attaching to Processes], page @8 details.

6.3.1 Customizing Attaching to Processes

When attaching to a process (seection 6.3 [Attaching to a Process], pagg, DD uses gs
command to get the list of processes. This command is defined bggB®mmand resource.

psCommand (class PsCommand) Resource
The command to get a list of processes. Usuplly Depending on your system, useful
alternate values includes -ef andps ux . The first line of the output must either contain a
‘PID' title, or each line must begin with a process ID.

Note that the output of this command is filtered byD; a process is only shown if it can
be attached to. Thepp process itself as well as the process of the inferior debugger are
suppressed, too.

94 Debugging with DDD

6.4 Program Stops

After the program has been started, it runs until one of the following happens:
A breakpoint is reached (ség=ction 5.1 [Breakpoints], page)79
A watched value changes (sBection 5.2 [Watchpoints], page)85
The program is interrupted (s&ection 5.3 [Interrupting], page R6
A signal is received (seBection 6.10 [Signals], page 100
Execution completes.

DDD shows the current program status in the debugger console. The current execution position
is highlighted by an arrow.

If “‘Edit = Preferences = General = Uniconify When Ready ' is set, DDD auto-
matically deiconifies itself when the program stops. This way, you can icomifyduring a lengthy
computation and have it uniconify as soon as the program stops.

6.5 Resuming Execution

6.5.1 Continuing

To resume execution, at the current execution position, click onGbetinue ° button. Any
breakpoints set at the current execution position are bypassed.

6.5.2 Stepping one Line

To execute just one source line, click on tig&t€p ' button. The program is executed until
control reaches a different source line, which may be in a different function. Then, the program is
stopped and control returns tmp.

Warning If you use the Step ’ button while control is within a function that was compiled
without debugging information, execution proceeds until control reaches a function that does have
debugging information. Likewise, it will not step into a function which is compiled without de-
bugging information. To step through functions without debugging information, usé&thpi* ’
button (se&ection 8.2 [Machine Code Execution], page 138

In GDB, the ‘Step ’ button only stops at the first instruction of a source line. This prevents the
multiple stops that used to occur in switch statements, for loops,&tep * continues to stop if a
function that has debugging information is called within the line.

Also, the ‘Step ’ in ¢DB only enters a subroutine if there is line number information for the
subroutine. Otherwise it acts like thidext * button.

6.5.3 Continuing to the Next Line

To continue to the next line in the current function, click on tNext ’ button. This is similar
to ‘'Step ’, but any function calls appearing within the line of code are executed without stopping.

Execution stops when control reaches a different line of code at the original stack level that was
executing when you clicked olNext .

Chapter 6: Running the Program 95

6.5.4 Continuing Until Here

To continue running until a specific location is reached, use @@ntinue Until Here ’
facility from the line popup menu. Seeection 5.1.4 [Temporary Breakpoints], page for a
discussion.

6.5.5 Continuing Until a Greater Line is Reached

To continue until a greater line in the current function is reached, click onthgl* ’ button.
This is useful to avoid single stepping through a loop more than once.

‘Until ’is like ‘Next ’, except that whenUntil ' encounters a jump, it automatically contin-
ues execution until the program counter is greater than the address of the jump.

This means that when you reach the end of a loop after single stepping thouwgtilit, *’ makes
your program continue execution until it exits the loop. In contrast, clicking\mxt ' at the end
of a loop simply steps back to the beginning of the loop, which forces you to step through the next
iteration.

‘Until ’ always stops your program if it attempts to exit the current stack frame.

‘Until " works by means of single instruction stepping, and hence is slower than continuing
until a breakpoint is reached.

6.5.6 Continuing Until Function Returns

To continue running until the current function returns, use #irish ' button. The returned
value (if any) is printed.

6.6 Continuing at a Different Address

Ordinarily, when you continue your program, you do so at the place where it stopped. You can
instead continue at an address of your own choosing.

The most common occasion to use this feature is to back up—perhaps with more breakpoints
set-over a portion of a program that has already executed, in order to examine its execution in more
detail.

To set the execution position to the current location, uSet Execution Position ’
from the breakpoint popup menu. This item is also accessible by pressing and holding the
‘Break/Clear ' button?

As a quicker alternative, you can also prassuse button bn the arrow and drag it to a different
location?

4 jpB, PYDB, and Perl do not support altering the execution position.

® When glyphs are disabled (s€ection 4.4 [Customizing Source], page,idragging the execution posi-
tion is not possible. Set the execution position explicitly instead.

Debugging with DDD

i{nt main{int /* a 1;Ent maintint /% a int main{int /* a
int i = 42; int 1 = 42; int i = 42;
tree_testid; =5 tree_testi); tree_test(d:
i4++; A 1++; i4++;
Tist_testi{i); A Tist_testiil; Tist_test(il;
i++; A 1+ i4++:
array_testi); array_testii; array_test();
1++; 1++; 1++;
type_test(); type_testil; type_testi);
—i; —1: —i;

Click on arrow, hold mouse button and move to the final position.

Changing the Execution Position by Dragging the Execution Arrow

Moving the execution position does not change the current stack frame, or the stack pointer, or
the contents of any memory location or any register other than the program counter.

Some inferior debuggers (notakiyB) allow you to set the new execution position into a differ-
ent function from the one currently executing. This may lead to bizarre results if the two functions
expect different patterns of arguments or of local variables. For this reason, moving the execution
position requests confirmation if the specified line is not in the function currently executing.

After moving the execution position, click o&bntinue ’to resume execution.

6.7 Examining the Stack

When your program has stopped, the first thing you need to know is where it stopped and how it
got there.

Each time your program performs a function call, information about the call is generated. That
information includes the location of the call in your program, the arguments of the call, and the
local variables of the function being called. The information is saved in a block of data called a
stack frame. The stack frames are allocated in a region of memory called:thetack.

When your program stops, teop commands for examining the stack allow you to see all of
this information.

One of the stack frames iglected by bbb and manyppb commands refer implicitly to the
selected frame. In particular, whenever you ask for the value of a variable in your program, the
value is found in the selected frame. There are speaa commands to select whichever frame
you are interested in.

6.7.1 Stack Frames

The call stack is divided up into contiguous pieces cadtack frames, or frames for short; each
frame is the data associated with one call to one function. The frame contains the arguments given
to the function, the function’s local variables, and the address at which the function is executing.

Chapter 6: Running the Program 97

When your program is started, the stack has only one frame, that of the funwion This is
called theinitial frame or theoutermost frame. Each time a function is called, a new frame is made.
Each time a function returns, the frame for that function invocation is eliminated. If a function is
recursive, there can be many frames for the same function. The frame for the function in which
execution is actually occurring is called thmermost frame. This is the most recently created of
all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame consists of
many bytes, each of which has its own address; each kind of computer has a convention for choosing
one byte whose address serves as the address of the frame. Usually this address is kept in a register
called theframe pointer register while execution is going on in that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the innermost frame, one
for the frame that called it, and so on upward. These numbers do not really exist in your program;
they are assigned bByDB to give you a way of designating stack frames:imB commands.

6.7.2 Backtraces

DDD provides abacktrace window showing a summary of how your program got where it is.
It shows one line per frame, for many frames, starting with the currently executing frame (frame
zero), followed by its caller (frame one), and on up the stack.

To enable the backtrace window, selestdtus = Backtrace .

£: DDD: Backtrace E
Backtrace
B4 Ox804881e in __crt_dummy__ O Calling functions

#3 0x8048e62 in main () ab cxwtest.C:275
#2 DxSMSSSE in tree_test () at cxxtest.C:127

:B04878d in Tree::Tree ¢} at cxxtest.C:96 Current frame in source window
#0 Date :Date () at cxmtest.C:51

Called functions

Up Down | Close | Help

Selecting a Frame from the Backtrace Viewer

Using GDB, each line in the backtrace shows the frame number and the function name. The
program counter value is also shown—unless you useti'ecommand Set print address
off . The backtrace also shows the source file name and line number, as well as the arguments to
the function. The program counter value is omitted if it is at the beginning of the code for that line
number.

98 Debugging with DDD

6.7.3 Selecting a Frame

Most commands for examining the stack and other data in your program work on whichever
stack frame is selected at the moment. Here are the commands for selecting a staék frame.

In the backtrace window, you caselectan arbitrary frame to move from one stack frame to
another. Just click on the desired frame.

The ‘Up’ button selects the function that called the current one—that is, it moves one frame up.

The ‘Down button selects the function that was called by the current one—that is, it moves one
frame down.

You can also directly type thg anddown commands at the debugger prompt. Typi@@+Up)
and Ctri+Down), respectively, will also move you through the stack.

‘Up’ and ‘Down actions can be undone vi&dit = Undo’.

6.8 “Undoing” Program Execution

If you take a look at theEdit = Undo’ menu item after an execution command, you'll find
thatppp offers you to undo execution commands just as other commands. Does this meartthat
allows you to go backwards in time, undoing program execution as well as undoing any side-effects
of your program?

Sorry—we must disappoint youbDD cannot undo what your program did. (After a little bit
of thought, you'll find that this would be impossible in general.) Howewen) can do something
different: it can shovpreviously recorded stated your program.

After “undoing” an execution command (vi&dit = Undo’, or the ‘Undo’ button), the exe-
cution position moves back to the earlier position and displayed variables take their earlier values.
Your program state is in fact unchanged, bub gives you aviewon the earlier state as recorded
by DDD.

In this so-calledhistoric mode, most normalbpbp commands that would query further infor-
mation from the program are disabled, since the debugger cannot be queried for the earlier state.
However, you can examine the current execution position, or the displayed variables. Wsilog *
and ‘Redo’, you can move back and forward in time to examine how your program got into the
present state.

To let you know that you are operating in historic mode, the execution arrow gets a dashed-line
appearance (indicating a past position); variable displays also come with dashed lines. Furthermore,
the status line informs you that you are seeing an earlier program state.

Here’s how historic mode works: each time your program stopsy collects the current exe-
cution position and the values of displayed variables. Backtrace, thread, and register information is
also collected if the corresponding dialogs are open. When “undoing” an execution conmmand,
updates its view from this collected state instead of querying the program.

If you want to collect this information without interrupting your program—within a loop, for
instance—you can place a breakpoint with an assoc@irtt command (se&ection 5.1.8 [Break-
point Commands], page 3When the breakpoint is hibpD will stop, collect the data, and execute
the ‘cont ' command, resuming execution. Using a latgndo’, you can step back and look at
every single loop iteration.

6 Perl does not allow changing the current stack frame.

Chapter 6: Running the Program 99

To leave historic mode, you can udeedo’ until you are back in the current program state.
However, anyppb command that refers to program state will also leave historic mode immediately
by applying to the current program state instead. For instatlg Jeaves historic mode immedi-
ately and selects an alternate frame in the restored current program state.

If you want to see the history of a specific variable, as recorded during program stops, you can
enter theobp command

graph history name

This returns a list of all previously recorded values of the variahlee, using array syntax.
Note thatname must have been displayed at earlier program stops in order to record values.

6.9 Examining Threads

In some operating systems, a single program may have more thahread of execution. The
precise semantics of threads differ from one operating system to another, but in general the threads
of a single program are akin to multiple processes—except that they share one address space (that
is, they can all examine and modify the same variables). On the other hand, each thread has its own
registers and execution stack, and perhaps private memory.

For debugging purposespp lets you display the list of threads currently active in your program
and lets you select theurrent thread—the thread which is the focus of debuggimgop shows all
program information from the perspective of the current thread.

£ DDD: Threads

Threads
Click on group to toggle view Group system: n 4]

1. Clock cond. waiting
2. Idle thread running
3. Async Garbage Collector cond. waiting
4. Finalizer thread cond. waiting
5. Debugger agent running
§. Breakpoint handler cond. waiting
7. Step handler cond, waiting

Group main:

Current thread 8. main cond. waiting Fi
Change thread properties Suspend Resume Close Help

Selecting Threads

To view all currently active threads in your program, sel&tatus = Threads '. The cur-
rent thread is highlighted. Select any thread to make it the current thread.

UsingJpB, additional functionality is available:

T Currently, threads are supporteddns andips only.

100 Debugging with DDD

e Select athread groupto switch between viewing all threads and the threads of the selected
thread group;

e Click on ‘Suspend ' to suspend execution of the selected threads;

e Click on ‘Resume€ to resume execution of the selected threads.

For more information on threads, see tla andcpB documentation (seg=ction “Debugging
Programs with Multiple Threads” iDebugging with GDB).

6.10 Handling Signals

A signal is an asynchronous event that can happen in a program. The operating system defines

the possible kinds of signals, and gives each kind a name and a nhumber. For exampies,in
SIGINT is the signal a program gets when you type an interf8{§ESEGVis the signal a program
gets from referencing a place in memory far away from all the areas irSlS&LRMoccurs when
the alarm clock timer goes off (which happens only if your program has requested an alarm).

Some signals, includin§IGALRM are a normal part of the functioning of your program. Oth-
ers, such aSIGSEGYV indicate errors; these signals dagal (kill your program immediately) if
the program has not specified in advance some other way to handle the SYBEIT does not
indicate an error in your program, but it is normally fatal so it can carry out the purpose of the
interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You carmniglin
advance what to do for each kind of signal.

Normally, DDD is set up to ignore non-erroneous signals BKEGEALRM(so as not to interfere
with their role in the functioning of your program) but to stop your program immediately whenever
an error signal happens. /D, you can view and edit these settings \&dtus = Signals '’

‘Status = Signals ’pops up a panel showing all the kinds of signals and khow has been
told to handle each one. The settings available for each signal are:

Stop If set, cbB should stop your program when this signal happens. This also implies
‘Print ' being set.

Print If set, cpB should print a message when this signal happens.
If unset,aGbpB should not mention the occurrence of the signal at all. This also implies
‘Stop ’ being unset.

Pass If set, cDB should allow your program to see this signal; your program can handle the
signal, or else it may terminate if the signal is fatal and not handled.

If unset,abpB should not allow your program to see this signal.

Chapter 6: Running the Program 101

£2 DDD: Signal Handling [%]

GDE Signal Handling

Hangup - _ __ _ ____________._ I~ Stop |7 Print |7 Pass ﬂl j 2
intemupt _ __ _______________. I~ Stop 7 Print _I Pass ﬂl j J
Quit __ . I” Stop I Print |7 Pass Send| ?|
Megal instruction - ___________. I” Stop 7 Print |7 Pass M j
Tracefreakpoint trap _ ________ 7 Stop [© Print _I Pass ﬂl j
Aborted ___________________. I Stop I Print 7 Pass Send| ?|
Emulation trap ______________. 7 Stop 7 Print |7 Pass Ml j
Arithmetic exception - _ [~ Stop |7 Print [T Pass ﬂl j
Killed __ ___________________ I~ Stop I Print [7 Pass Send| 2|
Busemor _____ ____________._ I~ Stop |7 Print 7 Pass ﬂl j
Segmentation fault _ __________ 7 Stop I7 Print |7 Pass ﬂl j
Bad systemcall _____________ 7 Stop |7 Print [T Pass ﬂl j]

OK | Haant | Help |

GDB Signal Handling Panel (Excerpt)

The entry All Signals '’ is special. Changing a setting here affeatssignals at once-
except those used by the debugger, typic8lIg TRAPandSIGINT .

To undo any changes, udedit = Undo’. The ‘Reset ' button restores the saved settings.

When a signal stops your program, the signal is not visible until you continue. Your program
sees the signal then, iPass’ is in effect for the signal in questioat that time In other words,
afteraDpB reports a signal, you can change tRass’ setting in ‘Status = Signals ’to control
whether your program sees that signal when you continue.

You can also cause your program to see a signal it normally would not see, or to give it any
signal at any time. TheSend’ button will resume execution where your program stopped, but
immediately give it the signal shown.

On the other hand, you can also prevent your program from seeing a signal. For example, if
your program stopped due to some sort of memory reference error, you might store correct values
into the erroneous variables and continue, hoping to see more execution; but your program would
probably terminate immediately as a result of the fatal signal once it saw the signal. To prevent this,
you can resume execution usingdmmands=- Continue Without Signal ’

‘Edit = Save Options ’'does not save changed signal settings, since changed signal settings
are normally useful within specific projects only. Instead, signal settings are saved with the current
session, usingFile = Save Session As '’

102 Debugging with DDD

6.11 Killing the Program

You can kill the process of the debugged program at any time usindKithe ° button.

Killing the process is useful if you wish to debug a core dump instead of a running process.
ignores any core dump file while your program is running.

The ‘Kill " button is also useful if you wish to recompile and relink your program, since on
many systems it is impossible to modify an executable file while it is running in a process. In this
case, when you next click ofRun’, ¢pB notices that the file has changed, and reads the symbol
table again (while trying to preserve your current debugger state).

Chapter 7: Examining Data 103

7 Examining Data

DDD provides several means to examine data.

e The quickest way to examine variables is to move the pointer on an occurrence in the source
text. The value is displayed in the source line; after a second, a popup window (edtled
tip) shows the variable value. This is useful for quick examination of several simple values.

¢ |f you want to refer to variable values at a later time, you paint the value in the debugger
console. This allows for displaying and examining larger data structures.

¢ |f you want to examine complex data structures, you daplay them graphically in the data
window. Displays remain effective until you delete them; they are updated each time the
program stops. This is useful for large dynamic structures.

¢ If you want to examine arrays of numeric values, you pan them graphically in a separate
plot window. The plot is updated each time the program stops. This is useful for large numeric
arrays.

e Using GDB or DBX, you can als@examine memory contents in any of several formats, inde-
pendently of your program’s data types.

7.1 Showing Simple Values using Value Tips

To display the value of a simple variable, move the mouse pointer on its name. After a second, a
small window (calledvalue tip) pops up showing the value of the variable pointed at. The window
disappears as soon as you move the mouse pointer away from the variable. The value is also shown
in the status line.

£4 DDD: fusrifusersists1fzellerfddd/ddd/test))
File Edit View Program Commands

() | ()

Lookup |

public class jtest §

static void 3 {3
Tree tree;
-’ tree = hew Tree(?,
tree.left_= new Treetd, _ _
tree.left T new Tree(5, Move pointer on item

The value tip shows its value

A treeleft = null

Displaying Simple Values using Value Tips

You can disable value tips viaEtit = Preferences = General = Automatic
display of variable values as popup tips ",

104 Debugging with DDD

You can disable displaying variable values in the status linekifit' = Preferences =
General = Automatic display of variable values in the status line "

These customizations are tied to the following resources:

valueTips (class Tips) Resource
Whether value tips are enable@’, default) or not (off ’). Value tips affectbpbp perfor-
mance and may be distracting for some experienced users.

valueDocs (class Docs) Resource
Whether the display of variable values in the status line is enabted, (default) or not
(‘off).

You can turn off value tips viaEdit = Preferences = General = Automatic
Display of Variable Values ",

7.2 Printing Simple Values in the Debugger Console

The variable value can also be printed in the debugger console, making it available for future

operations. To print a variable value, select the desired variable by clickingse button bn its
name. The variable name is copied to the argument field. By clickindttiat* ’ button, the value
is printed in the debugger console. The printed value is also shown in the status line.

As a shorter alternative, you can simply pressuse button ®n the variable name and select
the ‘Print ’item from the popup menu.

£ DDD: fusrfusersists1 fzellerfddd/ddd/fjtestqtest java =] E3
Fle Edit View Program Commands Status Source Data Help |
0O: I tree.left. right ®» g D 9 T o2 A &
Lookup Find= Ereak Laich Print Display’ Show Rotale Set Undizp
£ = A
Tree tree; L
o) tree = new Tree(?, “Ada"l; £f Byron Lovelace Run
tree.left = new Tree{1, "Grace"l; F7 Murray Hopper
tree.left.left = new Tree(5, "Tudy'); fi Clapp Interrupt |
* tree.]gft. righ] = rnam Traaf®e “kathlaan'd; /7 McHulty
tree.right = Print tree.left.right —H o Select ‘Print’ on item
tree.date.set (2 Display tree.left. right
3 tree.date.set(3 Print tree.left. right
static void list_te Bt E6e, Voireo e Up | Down
What is tree.left.right é
Back | Fuwd i
mainl1] print tree.left Lookup tree.left.right] i i
tree.left.right = null P - Euit | boke | _The value is printed
main[1] [Break at tree.left.right 7 in the debugger console
A Print the value of the selec e =l free. L SFE (EhE 'F

Displaying Simple Values in the Debugger Console

Chapter 7: Examining Data 105

In GDB, the Print ' button generatesjrint command, which has several more options. See
section “Examining Data” imebugging with GDB, for GDB-specific expressions, variables, and
output formats.

7.3 Displaying Complex Values in the Data Window

To explore complex data structures, you dasplay them permanently in theata window The
data window displays selected data of your program, showing complex data structures graphically.
It is updated each time the program stops.

7.3.1 Display Basics

This section discusses how to create, manipulate, and delete displays. The essentials are:
e Click on ‘Display 'to display the variable in() .
e Click on a display to select it.
e Click on ‘Undisplay ’to delete the selected display.

7.3.1.1 Creating Single Displays

To create a new display showing a specific variable, select the variable by cliokinge button
1 on its name. The variable name is copied to the argument field. By clickingDisplay ’
button, a new display is created in the data window. The data window opens automatically as soon
as you create a display.

£ DDD: Program Data S[=] E3
File Edit View Program Data Help |
0: | *1ist 2 Qo @ N
Digplay Hide Rotate Sat Undisp

""""" © |3 *list->next

1: Tist value = 8§

(List *) 0xB804ab?8 self = 0x804abB8

next =

0x804abag|| = =

Scroll the data display

Displaying Data

As a shorter alternative, you can simply pressuse button ®n the variable name and select
‘Display ' from the popup menu.
As an even faster alternative, you can also double-click on the variable name.

As another alternative, you may also enter the expression to be displayed in the argument field
and press theDisplay ' button.

106 Debugging with DDD

Finally, you may also type in a command at the debugger prompt:

graph display expr [clustered] [at (x, ¥
[dependent on display] [[now or] when in scope]

This command creates a new display showing the value of the expresgionThe optional
parts have the following meaning:

clustered
If given, the new display is created in a cluster. Saetion 7.3.1.8 [Clustering],
page 1171for a discussion.

at(x, y) Ifgiven, the new display is created at the positiany). Otherwise, a default position
is assigned.

dependent on display
If given, an edge from the display numbered or nandexplay to the new display
is created. Otherwise, no edge is created. Seegion 7.3.4.1 [Dependent Values],
page 117for details.

when in scope

now or when in scope
If “whenin ’ is given, the display creation ideferred until execution reaches the
givenscope (a function name, as in the backtrace output).

If “now or when in ' is given, DpD first attempts to create the display immediately.
The display is deferred only if display creation fails.

If neither ‘when in ’ suffix nor ‘now or when in ’ suffix is given, the display is cre-
ated immediately.

7.3.1.2 Selecting Displays

Each display in the data window hasitée bar containing thadisplay numbegand the displayed
expression (theisplay namg Below the title, thedisplay valuas shown.

You can select single displays by clicking on them witbuse button.1

You canextendan existing selection by pressing ttghift key while selecting. You can also
togglean existing selection by pressing t@hift key while selecting already selected displays.

Single displays may also be selected by using the arrow &pys{Down), Ceft), andRight.

Multiple displaysare selected by pressing and holdinguse button $omewhere on the window
background. By moving the pointer while holding the button, a selection rectangle is shown; all
displays fitting in the rectangle are selected when mouse button 1 is released.

If the Shif) key is pressed while selecting, the existing selectiaxtended

By double-clicking on a display title, the display itself and all connected displays are automati-
cally selected.

Chapter 7: Examining Data

107

Selection rectangle

£: DDD: Program Data M= B3
File Edit View Program Data Help
= - - -
0: ! a 4 e & o«
ispla* Hide Rotate et Undisp
C2: *list | |3 *list-»next
1: Tist | || wvalue = a5 value = £
(List *) DxB04ab?8 self = 0xB04ab78 self = 0xB04absa
next = 0xB04ab88 next = 0x804ab98

Selecting Multiple Displays

7.3.1.3 Showing and Hiding Details

Aggregate values (i.e. records, structs, classes, and arrays) can be estpamdedthat is,

displaying all details, ohidden that is, displayed ag...}

To show details about an aggregate, select the aggregate by clinkimge button bn its name
or value and click on theShow button. Details are shown for the aggregate itself as well as for all
contained sub-aggregates.

To hide details about an aggregate, select the aggregate by cliokinge button bn its name
or value and click on theHide ' button.

£3 DDD: Program Data [_ (O] =]
File Edit View Program Data Help
() I twadin] 7 -

Rotate Set Undisp

Display Show

3:

twodim

11: twodim

[...]

[0x80496d4 "Pioneering”

0x80496df "women" |0x8043625 "in"

[...] [FEeeoenys
_ Mewr Display .-

Hidden details

Showr All
Rotate
Set Value...

Undisplay

B "computer’ |0y80495f1 "science”|0xB0435F3 "1”

Detailed view Select and show detail

Showing Display Detalil

When pressing and holdingouse button dn the Show/Hide ' button, a menu pops up with
even more alternatives:

108 Debugging with DDD

Show More ()
Shows details of all aggregates currently hidden, but not of their sub-aggregates. You
can invoke this item several times in a row to reveal more and more details of the
selected aggregate.

Show Just ()
Shows details of the selected aggregate, but hides all sub-aggregates.

Show All ()
Shows all details of the selected aggregate and of its sub-aggregates. This item is
equivalent to theShow button.

Hide () Hide all details of the selected aggregate. This item is equivalent télitle * button.

As a faster alternative, you can also pressuse button 8n the aggregate and select the appro-
priate menu item.

As an even faster alternative, you can also double-chickise button bn a value. If some part
of the value is hidden, more details will be shown; if the entire value is shown, double-clicking will
hidethe value instead. This way, you can double-click on a value until you get the right amount of
details.

If all details of a display are hidden, the display is callé@dbled; this is indicated by the string
‘(Disabled) .

Displays can also be disabled or enabled vieb® command, which you enter at the debugger
prompt:

graph disable display displays. . .
disables the given displays.
graph enable display displays. . .
re-enables the given displays.
In both commandsfisplays. . . is either

e a space-separated list of display numbers to disable or enable, or

e a single display name. If you specify a display by name, all displays with this name will be
affected.

Use Edit = Undo’ to undo disabling or enabling displays.

7.3.1.4 Rotating Displays
Arrays, structures and lists can be oriented horizontally or vertically. To change the orientation
of a display, select it and then click on tHedtate ' button.

As a faster alternative, you can also pregsuse button 8n the array and seledRbtate ’from
the popup menu.

Chapter 7: Examining Data 109

£: DDD: Program Data M=l E3
File Edit View Program Data Help
():Idate ptre Q] 6
— N Display Hide Rotate Zet Undisp
i
12: date_ptrs
L' " [13: date_ptrs
*|[_0=804ah78] 0x804ab30 | 0x804abas | Dx804abcl]
A ésminy {3
. Mew Display - |. .
Hide All
Rotate Select and Rotate
Set Value...
Undisplay

Rotating an Array

If a structure or list is oriented horizontallypp automatically suppresses the member names.
This can be handy for saving space.

The last chosen display orientation is used for the creation of new displays. If you recently
rotated an array to horizontal orientation, the next array you create will also be oriented horizontally.
These settings are saved withdit = Save Options ’; they are tied to the following resources:

arrayOrientation (class Orientation) Resource
How arrays are to be oriented. Possible values a(mVERTICAL (default) and
‘XmMHORIZONTAL

showMemberNames(class ShowMemberNames) Resource

Whether to show struct member names or not. Defautins. '

structOrientation (class Orientation) Resource
How structs are to be oriented. Possible values atmVERTICAL (default) and
‘XMHORIZONTAL

7.3.1.5 Displaying Local Variables

You can display all local variables at once by choosirigata = Display Local
Variables . When usingpBX, XDB, JDB, or Perl, this displays all local variables, including the
arguments of the current function. When usaags or PYDB, function arguments are contained in
a separate display, activated [ydta = Display Arguments .

The display showing the local variables can be manipulated just like any other data display.
Individual variables can be selected and dereferenced.

110 Debugging with DDD

£2 DDD: Program Data =] E3
Fle Edit View Program Daia Help
():Ithis‘! 2 a6 &
i Dizp* Hide Rotate Set Undizp
[Locals %ﬁﬁﬁﬁﬁﬁﬁﬁiﬁiﬁiﬁﬁﬁﬁﬁﬁﬁﬁiﬁi Local arguments
this = X
v = E c0496e8 "adar DSPEY70 R : Dereference
il = Dy e g’ —— : : .
= — Mew Display - |2:_*this . via popup menu
—‘_\—_‘“&. value = .
Hide All | name = 0x80496e8 "ada} Dereferenced pointer
fotals e ?2%? :Dxﬂ}
SetValu... |37 wn | |L_risht = 0x0
Undisplay L

Dereferencing a Local Variable

7.3.1.6 Displaying Program Status

You can create a display from the output of an arbitrary debugger command. By entering
graph display ° command'
the output ofcommand is turned into astatus displaypdated each time the program stops.
For instance, the command
graph display ‘where’
creates a status display nam&dHhere’ that shows the current backtrace.
If you are usingaDB, DDD provides a panel from which you can choose useful status displays.

Select Data = Status Displays ' and pick your choice from the list.
GDB Status Displays
Click here... 7 Execution status of the program ____________________ j 4|
~I List of all registers and theircontents ________________ j
. . . i int i ir ¢ 7
... to enable or disable this status display P P A AT I 2 A RS AR oo Bl
J7 Source files in the program ________________________ j
I Expressions to display when program stops ___________ j
_I Information about the current source file _ _____________ j
£2 DDD: Program Data _1 IDs of currently known threads ___ __________________ j
File Edit View Progran Data I Exceptions that can be caught in the current stack frame _ j
0 I “infa program’ I Argument variables of current stack frame ____________ j
_I Local variables of current stack frame _ ___ ___________ j
: Proaran | -1 Allabout selected stack frame _____________________ j
|Using the running image of child process 31764.| | | .y Backtrace of the stack j
Program stopped at OxB8048dcc. |) TTTTTTITTIIIITIIIIIITTTC o ¥
“|It stopped at breakpoint 2. 1
-|Sources oK | ﬂl
-|Source files for which symbols have been read in:

: fusrfusers/ststfzeller/ddd/ddd/ cuntest. C

“|Source files for which symbols will be read in on demand:

Activating Status Displays

Chapter 7: Examining Data 111

Refreshing status displays at each stop takes time; you should delete status displays as soon as
you don’t need them any more.

7.3.1.7 Refreshing the Data Window

The data window is automatically updatedrefreshed each time the program stops. Values that
have changed since the last refresh are highlighted.

However, there may be situations where you should refresh the data window explicitly. This is
especially the case whenever you changed debugger settings that could affect the data format, and
want the data window to reflect these settings.

You can refresh the data window by selectibata = Refresh Displays .

As an alternative, you can presmuse button 8n the background of the data window and select
the ‘Refresh Displays ' item.
Typing
graph refresh
at the debugger prompt has the same effect.

7.3.1.8 Clustering Displays

If you examine several variables at once, having a separate display for each of them uses a lot
of screen space. This is wpD supportsclusters. A cluster merges several logical data displays
into one physical display, saving screen space.

There are two ways to create clusters:

e You can create clustersanually This is done by selecting the displays to be clustered and
choosing Undisp = Cluster () ’. This creates a new cluster from all selected displays.
If an already existing cluster is selected, too, the selected displays will be clustered into the
selected cluster.

e You can create a clustautomaticallyfor all independent data displays, such that all new

data displays will automatically be clustered, too. This is achieved by enaltidigy ‘=
Preferences = Data = Cluster Data Displays "

Di spl ays

1: uni
i
.} bit 1
bit2

2: guni 3. pi
i =1 3.14159274

uni =

===
N =

Wk N

=l

~wk~

3 {..-} 4 sqrt2
1.4142135623730951

et

guni =

~——lcoco-:

)
4
3.14159274
1.4142135623730951

pi
sqrt2

Clustered and Unclustered Displays

Displays in a cluster can be selected and manipulated like parts of an ordinary display; in par-
ticular, you can show and hide details, or dereference pointers. However, edges leading to clustered
displays can not be shown, and you must either select one or all clustered displays.

112 Debugging with DDD

Disabling a cluster is callednclustering and again, there are two ways of doing it:

e You can uncluster displaysanually by selecting the cluster and choosirigndisp =
Uncluster () '

e You can uncluster all current and future displays by disablibdit = Preferences =
Data = Cluster Data Displays "

7.3.1.9 Creating Multiple Displays

To display several successive objects of the same type (a section of an array, or an array of
dynamically determined size), you can use the notatiami.. to’ in display expressions.

from andto are numbers that denote the first and last expression to display. Thus,

graph display argv[0..9]

creates 10 new displays faargv[0] ’,‘argv[l] ', ...,‘argv[9] '. The displays are clustered
automatically (se&ection 7.3.1.8 [Clustering], page J)1%uch that you can easily handle the set
just like an array.

The ‘from.. to’ notation can also be used multiple times. For instance,

graph display 1..5 * 1..5

creates a handy small multiplication table.

The ‘from.. to’ notation creates several displays, which takes time to create and update. If you
want to display only a part of an arragtray slicesare a more efficient way. Segection 7.3.2.1
[Array Slices], page 11,5or a discussion.

7.3.1.10 Editing all Displays

You can view the state of all displays by selectim@ata = Displays . This invokes the

Display Editor.

Chapter 7: Examining Data 113
2 DDD: Program Data =[O]
File Edit View Program Data Help
0 | *1ist—next—next—next o &
Digplay Hide Rotate Set Undizp
|2 *list |3 *list-dnext
1: Tist | || value =85 value = 85
(List *) OxB80daeed self = Ox804aeed self = Ox804aefs
i next = OxB804aefs|| - next = 0x804af08
TMocals — _ _
. . il = DDD: Display Edit =
[Tist = (List) Ox804aces|’ __ S R X
s E
Dizplays. Dispes Show Hide Sat Undisp
Num Expression State Scope Address
=1: "info locals” enabled
1: Tist enabled Tist_test 0Oxbffffasc
2: *list enabled list_test 0x804aee8
3 *list—rnesxt gnahled Tist_test 0x804aefs
4: #list—cnext—rnext enabled Tist_test 0x804af0s
Selected Display
g *list alias of 2 Tlist_test O0OxB804aeed
Close | Help |

The Display Editor

The Display Editor shows the properties of each display, using the following fields:

‘Num

‘Expression

‘State

The display number.

The displayed expression.
" One of

‘enabled ’
Normal state.

‘disabled

Disabled; all details are hidden. UsgHow to enable.

‘not active ’
Out of scope.

‘deferred

Will be created as soon as itScope’ is reached (se&ection 7.3.1.1

[Creating Single Displays], page 105

‘clustered '’

Part of a cluster (se&ection 7.3.1.8 [Clustering], page)11 Use
‘Undisp = Uncluster ’to uncluster.

‘alias of display’

A suppressed alias of displalysplay (seeSection 7.3.4.3 [Shared Struc-

tures], page 118

114 Debugging with DDD

‘Scope’ The scope in which the display was created. For deferred displays, this is the scope in
which the display will be created.

‘Address ’
The address of the displayed expression. Used for resolving aliaséz(sée 7.3.4.3
[Shared Structures], page 118

7.3.1.11 Deleting Displays

To delete a single display, select it and click on thadisp ’ button. As an alternative, you can
also pressnouse button 8n the display and select thghdisplay ’item.

When a display is deleted, its immediate ancestors and descendants are automatically selected,
so that you can easily delete entire graphs.

To delete several displays at once, use thiedisp ’ button in the Display Editor (invoked via
‘Data = Displays). Select any number of display items in the usual way and delete them by
pressing Undisp .

As an alternative, you can also useap command:

graph undisplay displays. . .
Here,displays. . . is either
e aspace-separated list of display numbers to disable or enable, or

e a single display name. If you specify a display by name, all displays with this name will be
affected.

If you are using stacked windows, deleting the last display from the data window also automat-
ically closes the data window. (You can change this #dit = Preferences = Data =
Close data window when deleting last display ")

If you deleted a display by mistake, u¢edit = Undo’ to re-create it.

Finally, you can also cut, copy, and paste displays usingGag", * Copy’, and ‘Paste ' items
from the Edit ' menu. The clipboard holds theommandsised to create the display®dste ’
inserts the display commands in the debugger console. This allows you to save displays for later
usage or to copy displays across multipiep instances.

7.3.1.12 Customizing Displays

You can use these resources to control display appearance:

autoCloseDataWindow (class AutoClose) Resource
If this is ‘on’ (default) andppD is in stacked window mode, deleting the last display auto-
matically closes the data window. If this ieff ’, the data window stays open even after
deleting the last display.

bumpDisplays (class BumpDisplays) Resource
If some displayd changes size and this resourceas* (default), DDD assigns new positions
to displays below and on the right af such that the distance between displays remains
constant. If this isoff ’, other displays are not rearranged.

Chapter 7: Examining Data 115

clusterDisplays (class ClusterDisplays) Resource
If ‘on’, new independent data displays will automatically be clustered. Defaulfffis’,
meaning to leave new displays unclustered.

hidelnactiveDisplays (class HidelnactiveDisplays) Resource
If some display gets out of scope and this resourcens (default), bbD removes it from the
data display. If this isoff ’, itis simply disabled.

showBaseDisplayTitles(class ShowDisplayTitles) Resource
Whether to assign titles to base (independent) displays or not. Defaoift’is *

showDependentDisplayTitles(class ShowDisplayTitles) Resource
Whether to assign titles to dependent displays or not. Defaudffis™

7.3.2 Displaying Arrays

DpDD has some special features that facilitate handling of arrays.

7.3.2.1 Array Slices

It is often useful to print out several successive objects of the same type in memdiye a
(section) of an array, or an array of dynamically determined size for which only a pointer exists in
the program.

UsingDDD, you can display slices using th&dm.. to’ notation (se€Section 7.3.1.9 [Creating
Multiple Displays], page 112 But this requires that you already kndftom and to; it is also
inefficient to create several single displays. If you asas, you have yet another alternative.

Using GDB, you can display successive objects by referring to a contiguous span of memory as
anartificial array, using the binary operato@. The left operand of @ should be the first element
of the desired array and be an individual object. The right operand should be the desired length
of the array. The result is an array value whose elements are all of the type of the left argument.
The first element is actually the left argument; the second element comes from bytes of memory
immediately following those that hold the first element, and so on.

Here is an example. If a program says
int *array = (int *) malloc (len * sizeof (int));
you can print the contents afray with
print array[0]@Ilen
and display the contents with
graph display array[0]@Ilen
The general form of displaying an array slice is thus
graph display array| first]@nelems

wherearray is the name of the array to displaist is the index of the first element, amélems is
the number of elements to display.

The left operand of @ must reside in memory. Array values made wi@ in this way behave
just like other arrays in terms of subscripting, and are coerced to pointers when used in expressions.

116 Debugging with DDD

7.3.2.2 Repeated Values

Using GDB, an array value that is repeated 10 or more times is displayed only once. The value
is shown with a<nx>" postfix added, whera is the number of times the value is repeated. Thus,
the display Ox0 <30x> ’ stands for 30 array elements, each with the vald"”. This saves a lot
of display space, especially with homogeneous arrays.

£: DDD: Program Data =] B3
File Edit View Program Data Help
(: | *ar (11 A UL o B =
Display* Hide FRotate Set Undizp
= ar | - - 2 4 - - - .
DHD D
Lebmdadzel oo - /_&_\\ 7| IR
020 <8=>I" 13: ar[1] T T T | R L | e Repeated Value
Ox804adfofl |Cint *) Ox804ad2c| 11 sof
OxBO4adfd) . . EXH| I
Ox0 <4?==., 0 <d4?=x
Ow804aeball. L Qa

Displaying Repeated Array Values

The defaultcpB threshold for repeated array values is 10. You can change itBdd ‘' =
GDB Settings = Threshold for repeated print elements ". Setting the threshold to
0 will causecpB (andDpDD) to display each array element individually. Be sure to refresh the data
window via ‘Data = Refresh Displays ' after a change imDB settings.

You can also configurepp to display each array element individually:

expandRepeatedValueqclass ExpandRepeatedValues) Resource
GDB can print repeated array elements asgalie <repeated n times> . If
‘expandRepeatedValues ' is ‘on’, bpD will display n instances ofvalue instead. If
‘expandRepeatedValues ' is ‘off ' (default), ppp will display value with ‘<nx>’
appended to indicate the repetition.

7.3.2.3 Arrays as Tables

By default, bppD lays out two-dimensional arrays as tables, such that all array elements are
aligned with each othér. To disable this feature, unseEdit = Preferences = Data =
Display Two-Dimensional Arrays as Tables ". This is tied to the following resource:

L This requires that the full array size is known to the debugger.

Chapter 7: Examining Data 117

align2dArrays (class Align2dArrays) Resource
If “on’ (default), DDD lays out two-dimensional arrays as tables, such that all array elements
are aligned with each other. 16ff ', DDD treats a two-dimensional array as an array of
one-dimensional arrays, each aligned on its own.

7.3.3 Assignment to Variables

During program execution, you can change the values of arbitrary varfables.

To change the value of a variable, enter its namd)in—for instance, by selecting an occur-
rence or a display. Then, click on th&ét ' button. In a dialog, you can edit the variable value at
will; clicking the ‘OK or * Apply ’ button commits your change and assigns the new value to the
variable.

£ DDD: Program Data M[=] E3
File Edit View Program Data Help
I = " AT oA -
| pil =4 iy
() I Pl Déf?T;v % Fotate -%g‘ Undisp Select to set
.......... . |Set the value of)]
_ £ DDD: Set Value %]
: - Setvalweofpi |l
__________ |3 14153274 —————H Enter new value here
---------- ok | apply | cancer Help R

Changing Variable Values

To change a displayed value, you can also sefget Value ' menu from the data popup menu,
If you made a mistake, you can ugedit = Undo’ to re-set the variable to its previous value.

7.3.4 Examining Structures

Besides displaying simple valuasbp can also visualize th®ependencies between values—
especially pointers and other references that make up complex data structures.

7.3.4.1 Displaying Dependent Values

Dependent displays are created from an existing display. The dependency is indicated by an
edge leading from the originating display to the dependent display.

To create a dependent display, select the originating display or display part and enter the depen-
dent expression in th€): *argument field. Then click on théisplay ’ button.

2 ;pB does not support changing variable values.

118 Debugging with DDD

Using dependent displays, you can investigate the data structure of a tree for example and lay it
out according to your intuitive image of the tree data structure.

By default, pDDD does not recognize shared data structures (i.e. a data object referenced by
multiple other data objects). Séection 7.3.4.3 [Shared Structures], page, faBdetails on how
to examine such structures.

7.3.4.2 Dereferencing Pointers

There are special shortcuts for creating dependent displays showing the value of a dereferenced
pointer. This allows for rapid examination of pointer-based data structures.

To dereference a pointer, select the originating pointer value or name and click @igpé *’
button. A new display showing the dereferenced pointer value is created.

As a faster alternative, you can also pressuse button ®n the originating pointer value or
name and select th®isplay * ' menu item.

As an even faster alternative, you can also double-cliokise button bn the originating pointer
value or name. If you presgirl) while double-clicking, the display will be dereferendedplace-
that is, it will be replaced by the dereferenced display.

The ‘Display *() ’function is also accessible by pressing and holding Bisplay ’ button.

7.3.4.3 Shared Structures

By default,ppD does not recognize shared data structures—that is, a data object referenced by
multiple other data objects. For instance, if two point@s ‘and ‘p2’ point at the same data object
‘d’, the data displaysd’, ‘ *p1 ', and *p2 ' will be separate, although they denote the same object.

DDD provides a special mode which makes it detect these situatiors.recognizes if two or
more data displays are stored at the same physical address, and if this is so, mergesaihthese
into one single data display, tleiginal data display This mode is called\lias Detection it is
enabled viaData = Detect Aliases '

When alias detection is enableaolhD inquires the memory location (treddres$ of each data
display after each program step. If two displays have the same address, they are merged into one.
More specifically, only the one which has least recently changed remairarigh®al data display;
all other aliases arsuppressed.e. completely hidden. The edges leading to the aliases are replaced
by edges leading to the original data display.

An edge created by alias detection is somewhat special: rather than connecting two displays
directly, it goes through aadge hint, describing an arc connecting the two displays and the edge
hint.

Each edge hint is a placeholder for a suppressed alias; selecting an edge hint is equivalent to
selecting the alias. This way, you can easily delete display aliases by simply selecting the edge hint
and clicking on Undisp .

Chapter 7: Examining Data 119

2 DDD: Program Data M=l E3
File Edit View Program Data Help
(O I Tist—snext—>next—rnext o o &
Disp:+ Hide Rotate Set Undisp
o C|2: *list |3 *list->next
1: Tist 00 value = 85 value =86 || .
(List *) Du804aec8 self = OxB04aeed self = OxB04aefs
’ next, = 0xB04aef8|| - next = OxB04afoB| =~
_________ TN,
"|Locals |1 ;_-h___4: *list->next—onext|
\list = (List *) Ox804aee8| | | value = 67 ||
.................. SE]F — DXBD4&FDB

Original Display Edge Hint

Examining Shared Data Structures

To access suppressed display aliases, you can also use the Display Editor. Suppressed displays
are listed in the Display Editor adiasesof the original data display. Via the Display Editor, you
can select, change, and delete suppressed displays.
Suppressed displays become visible again as soon as
e alias detection is disabled,
e their address changes such that they are no more aliases, or

e the original data display is deleted, such that the least recently changed alias becomes the new
original data display.

Please note the followingaveatswith alias detection:

e Alias detection requires that the current programming language provides a means to determine
the address of an arbitrary data object. Currently, only €,&nd Java are supported.

e Some inferior debuggers (for instance, Sun@&) produce incorrect output for address ex-
pressions. Given a pointgr you may verify the correct function of your inferior debugger by
comparing the values gf and ‘&p’ (unlessp actually points to itself). You can also examine
the data display addresses, as shown in the Display Editor.

e Alias detection slows downpb slightly, which is why it is disabled by default. You may con-
sider to enable it only at need—for instance, while examining some complex data structure—
and disable it while examining control flow (i.e., stepping through your program)» will
automatically restore edges and data displays when switching modes.

Alias detection is controlled by the following resources:

deleteAliasDisplays(class DeleteAliasDisplays) Resource
If this is ‘on’ (default), the Undisplay () ' button also deletes all aliases of the selected
displays. If this is off ’, only the selected displays are deleted; the aliases remain, and one
of the aliases will be unsuppressed.

detectAliases(class DetectAliases) Resource
If “on’, DDD attempts to recognize shared data structures. The defaolf is,'meaning that
shared data structures are not recognized.

120 Debugging with DDD

typedAliases (class TypedAliases) Resource
If “on’ (default), DDD requires structural equivalence in order to recognize shared data struc-
tures. If this is bff ’, two displays at the same address are considered aliases, regardless of
their structure.

7.3.4.4 Display Shortcuts

DDD Mmaintains ashortcut menwf frequently used display expressions. This menu is activated
e by pressing and holding th®Isplay ' button, or
e by pressingnouse button 8n some display and selectingew Display
e by pressingShifi andmouse button 8n some display.

, or

By default, the shortcut menu contains frequently used base conversions.

The ‘Other ' entry in the shortcut menu lets you create a new displayekendshe shortcut
menu.

As an example, assume you have selected a display natagd ptr '. Selecting Display
= Other ’pops up a dialog that allows you to enter a new expression to be displayed—for instance,
you can cast the displagate ptr ’to a new display (char *)date_ptr . If the *Include
in ‘New Display’ Menu ’toggle was activated, the shortcut menu will then contain a new entry
‘Display (char *)() " that will castanyselected displayisplay to ‘(char *) display’. Such
shortcuts can save you a lot of time when examining complex data structures.

i3 DDD: New Dependent Display

Modify expression here... ... toinclude it in the ‘New Display’ menu.

Display Expression
\'{,{char *3 date_ptr
£2 DDD: Program

Ale Edit wiew | Include in ‘Display ()" Menu Help |
03 (char) da AP -
I — Display | Cancel Help | | R e jdiste cet TneR
...... . Display (ehar *}() o
L — Convert to Dec .o
. 14: date_ tr
{bate *) 0xB04ab78 Convert o Hex
~ Convert to Oct
- Other...
" Edit Menu...
Display *()
Undisplay ()

Using Display Shortcuts

You can edit the contents of theew Display ' menu by selecting itsEdit Menu ’ item. This
pops up theshortcut Editorcontaining all shortcut expressions, which you can edit at leisure. Each
line contains the expression for exactly one menu item. ClickingAmply ’ re-creates theNew
Display ’'menu from the text. If the text is empty, thhléw Display ' menu will be empty, too.

Chapter 7: Examining Data 121

£x DDD: Program Data H=] 3
Fle Edit View Program Data Help
0O: I date_ptr ;2.*1 Qv & i
- - Disp+ Hide FRof=te Set Undisp
T4: date_ptr £ DDD: Shortcut Editor x|
(Date *) (B04ab 7 A Shortcuts
Display *()] i
T ee————— iCchar =302 £f Display Cchar #2300

) w Display {char *3(} || /d () // Convert to Dec
fa (3 FF Convert to Hew

_ H'de Al Convert to Dec fo () /7 Convert to Oct
. Heinie Convert to Hex

Set Value... Convert to Oct

Undisplay Other...

Invoke shortcut editor ————————————Fdit Menu...

0K Apply Cancel Help

Editing Display Shortcuts

DDD also allows you to specify individual labels for user-defined buttons. You can write such a
label after the expression, separated/by’: This feature is used in the default contents of thes
‘New Display ' menu, where each of the base conversions has a label:

it () // Convert to Bin
/d () // Convert to Dec
Ix () /I Convert to Hex
/o () // Convert to Oct

Feel free to add other conversions hesep supports up to 20New Display ' menu items.
The shortcut menu is controlled by the following resources:

dbxDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbe/‘Display ' menu
for DBX.

If a line contains a label delimitér the string before the delimiter is used aépression,
and the string after the delimiter is used as label. Otherwise, the laligisislay expres-
sion’. Upon activation, the string() ’in expression is replaced by the name of the currently
selected display.

gdbDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbe/‘Display ' menu
for cpB. See the description oflbxDisplayShortcuts ', above.
3 The string !/ ’; can be changed via théabelDelimiter 'resource. Se8ection 10.4.1 [Customizing

Buttons], page 14&or details.

122 Debugging with DDD

jdbDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbe/‘Display ' menu
for JDB. See the description oflbxDisplayShortcuts ', above.
perlDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbe/‘Display ' menu
for Perl. See the description albxDisplayShortcuts ', above.
pydbDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbe/‘Display ' menu
for pYDB. See the description oflbxDisplayShortcuts ', above.
xdbDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbe/ ‘Display *menu
for xDB. See the description oflbxDisplayShortcuts ', above.

7.3.5 Layouting the Graph

If you have several displays at once, you may wish to arrange them according to your personal
preferences. This section tells you how you can do this.

7.3.5.1 Moving Displays

From time to time, you may wish to move displays at another place in the data window. You
can move a single display by pressing and holdimmuse button bn the display title. Moving the
pointer while holding the button causes all selected displays to move along with the pointer.

Edge hints can be selected and moved around like other displays. If an arc goes through the edge
hint, you can change the shape of the arc by moving the edge hint around.

For fine-grain movements, selected displays may also be moved using the arrow keys. Pressing
(Shify and an arrow key moves displays by single pixels. Pres@mfy and arrow keys moves
displays by grid positions.

7.3.5.2 Scrolling Data

If the data window becomes too small to hold all displays, scroll bars are created. ifyous
set up to us@annersnstead, a panner is created in the lower right edge. When the panner is moved
around, the window view follows the position of the panner.

To change from scroll bars to panners, ugdit = Startup = Data Scrolling "and
choose eitherPanner ' or ‘ Scrollbars .

This setting is tied to the following resource:

pannedGraphEditor (class PannedGraphEditor) Resource
The control to scroll the graph.

e Ifthisis ‘on’, an Athena panner is used (a kind of two-directional scrollbar).
e Ifthisis ‘off ' (default), two Motif scrollbars are used.

See Section 2.1.2 [Options], page l6or the and

‘--panned-graph-editor " options.

--scrolled-graph-editor

Chapter 7: Examining Data 123

7.3.5.3 Aligning Displays

You can align all displays on the nearest grid position by seleciage = Align on Grid .
This is useful for keeping edges strictly horizontal or vertical.

You can enforce alignment by selectirigdit = Preferences = Data = Auto-align
Displays on Nearest Grid Point . If this feature is enabled, displays can be moved on grid
positions only.

7.3.5.4 Automatic Layout

You can layout the entire graph as a tree by selecbagja = Layout Graph .

£2 DDD: Program Data - [Ox]
Fle Edit View Program Data Help |

();|me—>umj a A 5 #® =
I
1: tree
(Tree *) 0x804aees

2: *tree

value = 7

name = Ox&0496e8 "Ada"
date = {...

Teft = Ox804af10
right = 0x804af88

-

: *tree->left 4: *tree->right

value = 1 value = 1

name = Oxé0496ec "Grace” . o name = oxeodsron "Mitdred- ||
date = £...} date = £...3

Teft = Dx804af38 Teft = 0x0
right = 0x804afE0 right = 020

5: *tree—>left—>Teft

value = 5
name = 0x80496F2 "Tudy"
date = {...3
Teft = 0x0
right = 0x0

6: *tree—>left-—>right
value = € .
name = 0x80496f7 "Kathleen"

date = {...3

left = Ox0
right = 0x0

A Layouted Graph (with Compact Layout)

Layouting the graph may introdueége hints; that is, edges are no more straight lines, but lead
to an edge hint and from there to their destination. Edge hints can be moved around like arbitrary
displays.

To enable a more compact layout, you can set thdit’ = Preferences = Data =
Compact Layout ' option. This realizes an alternate layout algorithm, where successors are
placed next to their parents. This algorithm is suitable for homogeneous data structures only.

You can enforce layout by settingedit = Preferences = Data = Automatic
Layout . If automatic layout is enabled, the graph is layouted after each change.

7.3.5.5 Rotating the Graph

You can rotate the entire graph clockwise by 90 degrees by seleddata ‘= Rotate
Graph'.

124 Debugging with DDD

If the graph was previously layouted, you may need to layout it again. Subsequent layouts will
respect the direction of the last rotation.

7.3.6 Printing the Graph

pDD allows for printing the graph picture on PostScript printers or into files. This is useful for
documenting program states.

Print To [erinter File
Print Command |§|pr Enter print command
hle Hame Bmwse...l
File Type % Post3chpt < FIG 1 Color
Print “# Displays -- Plots [~ Selected Only
Orientation “* Portrait -+ Landscape
4 A4 (2Z10mm x 297mm}) - A3 (297mm x 420mm)
Faper Size ~ Letter (8%" = 117) v Legak{Ble =114 Select paper size
+ Executive (7%"x10") .- Other...
Click to print [~ Print | Cancel | Help |

Printing displays

To print the graph on a PostScript printer, selégteé = Print Graph . Enter the printing
command in thePrint Command '’ field. Click on the ‘OK or the ‘Apply ' button to start printing.

As an alternative, you may also print the graph in a file. Click on Eike‘ ’ button and enter
the file name in theFile Name ' field. Click on the Print ’ button to create the file.

When the graph is printed in a file, two formats are available:

e ‘PostScript '—suitable for enclosing the graph in another document;

e 'FIG’'—suitable for post-processing, using tkg graphic editor, or for conversion into
other formats (among othengMmcL, TeX, pic), using theransfig ~ orfig2dev programs.

Chapter 7: Examining Data 125

self self self
T * val ue = 85 Q val ue = 86 q val ue = 87 '/>
2 lst | O el = oxsoaaf30|™5) self = 0xgodaf40[™5) self = 0x804af 50
(List *) Ox804a next = Ox804af 40 next = Ox804af 50 next = 0x804af 30

next

Output of the ‘Print Graph’ Command

Please note the followingaveatselated to printing graphs:

e If any displays were selected when invoking thi&riht ' dialog, the option Selected
Only " is set. This makesDD print only the selected displays.

e The ‘Color ’, ‘Orientation ', and ‘Paper Size ’ options are meaningful for PostScript
only.

These settings are tied to the following resources:

printCommand (class PrintCommand) Resource
The command to print a PostScript file. Usually * or “lpr .

paperSize (class PaperSize) Resource
The paper size used for printing, in formatidth x height’. The default is ISO A4 format,
or ‘210mm x 297mr

7.3.7 How Displays are Created

This section discusses hawp actually creates displays from data.

7.3.7.1 Handling Boxes

All data displayed in th@pp data window is maintained by the inferior debuggens, for in-
stance, providesa@isplay list holding symbolic expressions to be evaluated and printed on standard
output at each program stop. Taes command display tree "adds tree ’tothe display list
and makes:DB print the value oftree ' as, say, tree = (Tree *)0x20e98 ’, at each program
stop. ThiscDB output is processed lypp and displayed in the data window.

Each element of the display list, as transmitted by the inferior debugger, is readbwand
translated into dox Boxes are rectangular entities with a specific content that can be displayed in
the data window. We distinguisiitomicboxes anccompositeboxes. An atomic box holds white
or black space, a line, or a string. Composite boxes are horizontal or vertical alignments of other
boxes. Each box has a size and an extent that determines how it fits into a larger surrounding space.

Through construction of larger and larger boxesp constructs a graph node from th®B
data structure in a similar way a typesetting system lig€ Builds words from letters and pages
from paragraphs.

Such constructions are easily expressed by means of functions mapping boxes onto boxes. These
display functiongan be specified by the user and interpretedby, using an applicative language

126 Debugging with DDD

calledvsL for visual structure languagevsL functions can be specified by thep user, leaving
much room for extensions and customization.véL display function putting a frame around its
argument looks like this:
/[Put a frame around TEXT
frame(text) = hrule()
| vrule() & text & vrule()
| hrule();

Here,hrule() andvrule() are primitive functions returning horizontal and vertical lines,
respectively. The& and ‘| operators construct horizontal and vertical alignments fro their argu-
ments.

VvsL provides basic facilities like pattern matching and variable numbers of function arguments.
Thehalign() function, for instance, builds a horizontal alignment from an arbitrary number of
arguments, matched by three dots (*):

/I Horizontal alignment
halign(x) = x;
halign(x, ..) = x & halign(..);
Frequently needed functions likalign() are grouped into a standavdL library.

7.3.7.2 Building Boxes from Data

To visualize data structures, each atomic type and each type constructor from the programming
language is assignedvar display function. Atomic values like numbers, characters, enumerations,
or character strings are displayed using string boxes holding their valuestianction to display
them leaves them unchanged:

/[Atomic Values
simple_value(value) = value;

Composite values require more attention. An array, for instance, may be displayed using a
horizontal alignment:

/I Array
array(..) = frame(halign(..));

WhencpB sendsbpD the value of an array, thest, function ‘array() ' is invoked with array
elements as values. @DB array expression{1, 2, 3} 'is thus evaluated iwvsL as

array(simple_value("1"), simple_value("2"), simple_value("3"))
which equals

"1" & "2" & "3"
a composite box holding a horizontal alignment of three string boxes. The astufinction used
in DDD also puts delimiters between the elements and comes in a vertical variant as well.

Nested structures like multi-dimensional arrays are displayed by applyirgtig) func-
tion in a bottom-up fashion. Firsarray() is applied to the innermost structures; the resulting
boxes are then passed as arguments to anathey() invocation. ThezDB output

{{'a", "B", "C), (D", EY F
representing a 2 * 3 array of character strings, is evaluatediiras

array(array("A", "B", "C"), array("A", "B", "C")
resulting in a horizontal alignment of two more alignments representing the inner arrays.

Chapter 7: Examining Data 127

Record structures are built in a similar manner, using a display funstioiet_member
rendering the record members. Names and values are separated by an equality sign:

/I Member of a record structure
struct_member (name, value) =
name & " = " & value;

The display functiorstruct renders the record itself, using thalign() function?

/I Record structure
struct(..) = frame(valign(..));

This is a simple example; the actuadL function used imbpD takes additional effort to align
the equality signs; also, it ensures that language-specific delimiters are used, that collapsed structs
are rendered properly, and so on.

7.3.7.3 Customizing Display Appearance

DDD comes with a built-invsL library that should suffice for most, if not all, purposes. Using
the following resources, one can change and enhancesthdefinitions:

vsIBaseDefs(class VSLDefs) Resource
A string with additionalvsL definitions that are appended to the builtiaL library. This
resource is prepended to thesiDefs ’ resource below and set in thebp application
defaults file; don’t change it.

vslIDefs (class VSLDefs) Resource
A string with additionalvsL definitions that are appended to the builtisL library. The
default value is an empty string. This resource can be used to override spetiflefinitions
that affect the data display.

The general pattern to replace a function definitfonction with a new definitionnew_def
is:

#pragma replace function
function(args..) = new_def’;

The following vsr. functions are frequently used:

color(box, foreground [, background])
Set theforeground andbackground colors ofbox.

display_color(box)
The color used in data displays. Default:color(box, "black”,
"white") "’

title_color(box)
The color used in the title bar. Defaultdlor(box, "black™) '

disabled_color(box)
The color used for disabled boxes. Defaultcolor(box, "white",
Ilgreysoll) 1

4 valign() is similar tohalign() , but builds a vertical alignment.

128

Debugging with DDD

simple_color(box)
The color used for simple values. Defaultolor(box, "black™)

pointer_color(box)
The color used for pointers. Defaultdlor(box, "blued4”)

struct_color(box)
The color used for structures. Defaultolor(box, "black") '

array_color(box)
The color used for arrays. Defaultdlor(box, "blue4™)

reference_color(box)
The color used for references. Defaultolor(box, "blue4™)

changed_color(box)
The color used for changed values. Defaultolor(box, "black”,

"#ffffcc'™) '

stdfontfamily()
The font family used. One ofamily_times() ', family_courier() ',
‘family_helvetica() B ‘family_new_century() g or
‘family_typewriter() " (default).

stdfontsize()
The font size used (in pixels). (default) means to usstdfontpoints()
instead.

stdfontpoints()
The font size used (in 1/10 point€) means to usestdfontsize() "instead.
Default value:90.

stdfontweight()
The font weight used. This is eithewéight_ medium() ' (default) or
‘weight_bold() "
To set the pointer color tored4' , use
Ddd*vsIDefs: \
#pragma replace pointer_color\n\
pointer_color(box) = color(box, "red4");\n
To set the default font size to resolution-independent 10.0 points, use
Ddd*vsIDefs: \
#pragma replace stdfontsize\n\
#pragma replace stdfontpoints\n\
stdfontsize() = 0;\n
stdfontpoints() = 100;\n
To set the default font to 12-pixel courier, use
Ddd*vsIDefs: \
#pragma replace stdfontsize\n\
#pragma replace stdfontfamily\n\
stdfontsize() = 12;\n\
stdfontfamily() = family_courier();\n

See the fileddd.vsl ’ for further definitions to override using thgslDefs ’resource.

Chapter 7: Examining Data 129

vslLibrary (class VSLLibrary) Resource
Thevst library to use. builtin ~ ’ (default) means to use the built-in library, any other value
is used as file name.

vslPath (class VSLPath) Resource
A colon-separated list of directories to searchyer. include files. Default is."’, the current
directory.
If your ppD source distribution is installed iMdpt/src ’, you can use the following settings

to read thevsL library from ‘/home/joe/ddd.vsl

Ddd*vslLibrary: /home/joe/ddd.vsl
Ddd*vslIPath: ../opt/src/ddd/ddd:/opt/src/ddd/vsllib

vsL include files referenced byHome/joe/ddd.vsl " are searched first in the current di-
rectory *. ’, then in ‘fopt/src/ddd/ddd/ ', and then in Jopt/src/ddd/vsllib/ "

Instead of supplying anothesL library, it is often easier to specify some minor changes to the
built-in library. See thevsIDefs ' resource, above, for details.

7.4 Plotting Values

If you have huge amounts of numerical data to examine, a picture often says more than a thou-
sand numbers. ThereforepD allows you to draw numerical values in nice 2-D and 3-D plots.

7.4.1 Plotting Arrays

Basically,ppD can plot two types of numerical values:

e One-dimensional arrays. These are drawn in a23Dspace, where denotes the array index,
andy the element value.

e Two-dimensional arrays. These are drawn in a 3/B/z space, whera andy denote the
array indexes, and the element value.

To plot a fixed-size array, select its name by clickmmguse button bn an occurrence. The
array name is copied to the argument field. By clicking Rkt ’ button, a new display is created
in the data window, followed by a new top-level window containing the value plot.

To plot a dynamically sized array, you must use an array slice§segon 7.3.2.1 [Array Slices],
page 11% In the argument field, enter

array| first]@nelems

wherearray is the name of the array to displaist is the index of the first element, amédlems is
the number of elements to display. Then, click 8tot ' to start the plot.

To plot a value, you can also enter a command at the debugger prompt:
graph plot expr
works like ‘graph display expr’ (and takes the same arguments; Seetion 7.3.1.1 [Creating
Single Displays], page 1)5but the value is additionally shown in the plot window.

Each time the value changes during program execution, the plot is updated to reflect the current
values. The plot window remains active until you close it (W€ = Close ’) or until the
associated display is deleted.

130 Debugging with DDD

7.4.2 Changing the Plot Appearance

The actual drawing is not done lypp itself. Instead,bDDD relies on an externajnuplot
program to create the drawing.

DDD adds a menu bar to the Gnuplot plot window that lets you influence the appearance of the
plot:

e The View ' menu toggles optional parts of the plot, such as border lines or a background grid.

e The ‘Plot " menu changes thplotting style. The ‘3-D Lines ’ option is useful for plotting
two-dimensional arrays.

e The ‘Scale ' menu allows you to enable logarithmic scaling and to enable or disable the scale
tics.

e The ‘Contour ' menu adds contour lines to 3-D plots.
In a 3-D plot, you can use the scroll bars to change your view position. The horizontal scroll bar

rotates the plot around theaxis, that is, to the left and right. The vertical scroll bar rotates the plot
around they axis, that is, up and down.

£2 DDD: usriusersistsi fzellerfidddidddicxxtest.C M[=]E3
File Edit View Program Commands Status Source Data Help
ol
: | df
File Edit View Plot Scale Contour Help
o - N g N B N N N FE—
g0~
60 — A 1-D Array
0.
E0-
void plot_test() 50:
= B 40
fj 52 DDD: dr
. File Edit View 30 £ Plot
—_— | - .
(HElE Change Style
1 Lines
] D5="98 20 a0 4 [l 3-Dilines 1
q 100- Foints and Lines

Impulses
we ||
Steps

A 2-D Array)

Rotate View —————=5sp-& — =

Plotting 1-D and 2-D Arrays

You can also resize the plot window as desired.

7.4.3 Plotting Scalars and Composites

Besides plotting arraysypp also allows you to plot scalars (simple numerical values). This
works just like plotting arrays—you select the numerical variable, clickRdot' ', and here comes

Chapter 7: Examining Data 131

the plot. However, plotting a scalar is not very exciting. A plot that contains nothing but a scalar
simply draws the scalar’s value ay @onstant—that is, a horizontal line.

So why care about scalars at ati®p allows you to combine multiple values into one plot. The
basic idea is: if you want to plot something that is neither an array nor a soalatakes all numer-
ical sub-values it can find and plots them all together in one window. For instance, you can plot all
local variables by selectingpata = Display Local Variables ’, followed by ‘Plot . This
will create a plot containing all numerical values as found in the current local variables. Likewise,
you can plot all numeric members contained in a structure by selecting it, followeeldity '.

If you want more control about what to include in a plot and what not, you cadispiay clus-
ters(seeSection 7.3.1.8 [Clustering], page)17A common scenario is to plot a one-dimensional
array together with the current index position. This is done in three steps:

1. Display the array and the index, usiigsplay ’
2. Cluster both displays: select them and chots®lisp = Cluster () .
3. Plot the cluster by pressinglot .

Scalars that are displayed together with arrays can be displayed either as vertical lines or hori-
zontal lines. By default, scalars are plotted as horizontal lines. However, if a scalar is a valid index
for an array that was previously plotted, it is shown as a vertical line. You can change this initial
orientation by selecting the scalar display, followed Bptate '

7.4.4 Plotting Display Histories

At each program stoppDD records the values of all displayed variables, such that you can
“undo” program execution (segection 6.8 [Undoing Program Execution], pagé. Fhesedisplay
historiescan be plotted, too. The menu iteRIo6t = Plot history of () ' creates a plot that
shows all previously recorded values of the selected display.

7.4.5 Printing Plots

If you want to print the plot, selecFile = PrintPlot '. This pops up theopD printing
dialog, set up for printing plots. Just as when printing graphs, you have the choice between printing
to a printer or a file and setting up appropriate options.

The actual printing is also performed by Gnuplot, using the appropriate driver. Please note the
following caveatselated to printing:

e Creating FIG’ files requires an appropriate driver built into Gnuplot. Your Gnuplot program
may not contain such a driver. In this case, you will have to recompile Gnuplot, including the
line ‘#define FIG ’in the Gnuplot term.h ' file.

e The ‘Portrait ' option generates anps file useful for inclusion in other documents. The
‘Landscape ' option makesppbp print the plot in the size specified in thBaper Size
option; this is useful for printing on a printer. IiPortrait ' mode, the Paper Size
option is ignored.

e The Gnuplot device drivers for PostScript and X11 each have their own set of colors, such that
the printed colors may differ from the displayed colors.

e The ‘Selected Only ' option is set by default, such that only the currently selected plot is
printed. (If you select multiple plots to be printed, the respective outputs will all be concate-
nated, which may not be what you desire.)

132 Debugging with DDD

7.4.6 Entering Plotting Commands

Via ‘File = Command you can enter Gnuplot commands directly. Each command entered
at the gnuplot> ' prompt is passed to Gnuplot, followed by a Gnuplaplot ' command to
update the view. This is useful for advanced Gnuplot tasks.

Here’s a simple example. The Gnuplot command
set xrange [xmin: xmax]

sets the horizontal range that will be displayedtain. . .xmax. To plot only the elements 10 to
20, enter:

gnuplot> set xrange [10:20]

After each command enteredpp adds areplot command, such that the plot is updated
automatically.

Here’s a more complex example. The following sequence of Gnuplot commands saves the plot
in TeX format:

gnuplot> set output "plot.tex" # Set the output filename
gnuplot> set term latex # Set the output format
gnuplot> set term x11 # Show original picture again

Due to the implicitreplot command, the output is automatically written pdot.tex ' after
theset term latex command.

The dialog keeps track of the commands entered; use the arrow keys to restore previous com-
mands. Gnuplot error messages (if any) are also shown in the history area.

The interaction betweempDD and Gnuplot is logged in the file~/.ddd/log ' (see
Section B.5.1 [Logging], page 1k6ThepDD ‘--trace ’ option logs this interaction on standard
output.

7.4.7 Exporting Plot Data

If you want some external program to process the plot data (a stand-alone Gnuplot program or
thexmgr program, for instance), you can save the plot data in a file, usiig * = Save Data
As’. This pops up a dialog that lets you choose a data file to save the plotted data in.

The generated file starts with a few comment lines. The actual data follows in X/Y or X/Y/Z
format. It is the same file as processed by Gnuplot.

7.4.8 Animating Plots

If you want to see how your data evolves in time, you can set a breakpoint whose command
sequence ends in@nt command (se&ection 5.1.8 [Breakpoint Commands], page &ach
time this “continue” breakpoint is reached, the program stopoamdupdates the displayed values,
including the plots. ThempD executes the breakpoint command sequence, resuming execution.

This way, you can set a “continue” breakpoint at some decisive point within an array-processing
algorithm and havepbp display the progress graphically. When your program has stopped for good,
you can useUndo’ and ‘Redo’ to redisplay and examine previous program states.SSa¢on 6.8
[Undoing Program Execution], page ,98r details.

Chapter 7: Examining Data 133

7.4.9 Customizing Plots

You can customize the Gnuplot program to invoke, as well as a number of basic settings.

7.4.9.1 Gnuplot Invocation

Using ‘Edit = Preferences = Helpers = Plot ’, you can choose the Gnuplot pro-
gram to invoke. This is tied to the following resource:

plotCommand (class PlotCommand) Resource
The name of a Gnuplot executable. Defaultgauplot ’, followed by some options to set
up colors and the initial geometry.

Using ‘Edit = Preferences = Helpers = PlotWindow ’, you can choose whether
to use the Gnuplot plot window External ') or to use the plot window supplied byDD
(‘builtin). This is tied to the following resource:

plotTermType (class PlotTermType) Resource
The Gnuplot terminal type. Can have one of two values:

e Ifthisis ‘x11’, ppD “swallows” theexternalGnuplot output window into its own user
interface. Some window managers, notatsiwmhave trouble with swallowing tech-
nigues.

e Setting this resource txlib ' (default) makesbpp provide abuiltin plot windowin-
stead. In this mode, plots work well with any window manager, but are less customizable
(Gnuplot resources are not understood).

You can further control interaction with the external plot window:

plotWindowClass (class PlotWindowClass) Resource
The class of the Gnuplot output window. When invoking Gnupbatp waits for a window

with this class and incorporates it into its own user interface (unjgesTermType 'is
‘xlib ’; see above). Default isGnuplot .
plotWindowDelay (class WindowDelay) Resource

The time (in ms) to wait for the creation of the Gnuplot window. Before this delay,

looks at each newly created window to see whether this is the plot window to swallow. This
is cheap, but unfortunately, some window managers do not pass the creation avent to

If this delay has passed, amdbD has not found the plot windowyDD searchesll existing
windows, which is pretty expensive. Default time2i800 .

7.4.9.2 Gnuplot Settings

To change Gnuplot settings, use these resources:

plotinitCommands (class PlotinitCommands) Resource
The initial Gnuplot commands issued bpp. Default is:

134 Debugging with DDD

set parametric

set urange [0:1]

set vrange [0:1]

set trange [0:1]
The ‘parametric ’ setting is required to make Gnuplot understand the data files as gener-
atedppp. The range commands are used to plot scalars.

See the Gnuplot documentation for additional commands.

plot2dSettings (class PlotSettings) Resource
Additional initial settings for 2-D plots. Default isét noborder . Feel free to customize
these settings as desired.

plot3dSettings (class PlotSettings) Resource
Additional initial settings for 3-D plots. Default isét border '. Feel free to customize
these settings as desired.

7.5 Examining Memory

Using GDB Or DBX, You can ex