
DejaGnu

The GNU Testing Framework

Rob Savoye
Free Software Foundation

DejaGnu: The GNU Testing Framework
by Rob Savoye

1.4.1 Edition
Copyright © 2001 by Free Software Foundation, Inc.

Revision History

Revision 0.6.12001-2-16Revised by: rob@welcomehome.org
Add info on the new dejagnu.h file.
Revision 0.6 2001-2-16Revised by: rob@welcomehome.org
Updated for new release.
Revision 0.5 2000-1-24Revised by: rob@welcomehome.org
Initial version after conversion to DocBook.

Table of Contents
Abstract... -999

1. Overview... -999

1.1. What is DejaGnu ?.. -999
1.2. What’s New In This Release... -999

1.2.1. NT Support... -999
1.3. Design Goals... -999
1.4. A POSIX conforming test framework.. -999

2. Running Tests... -999

2.1. Make check... -999
2.2. Runtest.. -999

2.2.1. Output States.. -999
2.2.2. Invoking Runtest.. -999
2.2.3. Common Options... -999

2.3. The files DejaGnu produces.. -999
2.3.1. Summary File... -999
2.3.2. Log File.. -999
2.3.3. Debug Log File.. -999

3. Customizing DejaGnu... -999

3.1. Local Config File.. -999
3.2. Global Config File.. -999
3.3. Board Config File.. -999
3.4. Remote Host Testing... -999
3.5. Config File Values... -999

3.5.1. Command Line Option Variables... -999
3.5.2. Personal Config File... -999

4. Extending DejaGnu... -999

4.1. Adding A New Test Suite... -999
4.2. Adding A New Tool.. -999
4.3. Adding A New Target... -999
4.4. Adding A New Board... -999

3

4.5. Board Config File Values.. -999
4.6. Writing A Test Case.. -999
4.7. Debugging A Test Case... -999
4.8. Adding A Test Case To A Test Suite.. -999
4.9. Hints On Writing A Test Case.. -999
4.10. Special variables used by test cases.. -999

5. Unit Testing... -999

5.1. What Is Unit Testing ?.. -999
5.2. The dejagnu.h Header File.. -999

6. Reference.. -999

6.1. Obtaining DejaGnu... -999
6.2. Installation... -999

6.2.1. Configuring DejaGnu... -999
6.2.2. Installing DejaGnu... -999

6.3. Builtin Procedures... -999
6.3.1. Core Internal Procedures.. -999

6.3.1.1. Mail_file Procedure... -999
6.3.1.2. Open_logs Procedure.. -999
6.3.1.3. Close_logs Procedure.. -999
6.3.1.4. Isbuild Procedure.. -999
6.3.1.5. Is_remote Procedure... -999
6.3.1.6. is3way Procedure.. -999
6.3.1.7. Ishost Procedure.. -999
6.3.1.8. Istarget Procedure... -999
6.3.1.9. Isnative Procedure... -999
6.3.1.10. Unknown Procedure.. -999
6.3.1.11. Clone_output Procedure.. -999
6.3.1.12. Reset_vars Procedure.. -999
6.3.1.13. Log_and_exit Procedure... -999
6.3.1.14. Log_summary Procedure.. -999
6.3.1.15. Cleanup Procedure.. -999
6.3.1.16. Setup_xfail Procedure... -999
6.3.1.17. Record_test Procedure.. -999

4

6.3.1.18. Pass Procedure.. -999
6.3.1.19. Fail Procedure... -999
6.3.1.20. Xpass Procedure.. -999
6.3.1.21. Xfail Procedure... -999
6.3.1.22. Set_warning_threshold Procedure...................................... -999
6.3.1.23. Get_warning_threshold Procedure...................................... -999
6.3.1.24. Warning Procedure.. -999
6.3.1.25. Perror Procedure... -999
6.3.1.26. Note Procedure.. -999
6.3.1.27. Untested Procedure... -999
6.3.1.28. Unresolved Procedure... -999
6.3.1.29. Unsupported Procedure... -999
6.3.1.30. Init_testcounts Procedure.. -999
6.3.1.31. Incr_count Procedure.. -999
6.3.1.32. transform Procedure.. -999
6.3.1.33. Check_conditional_xfail Procedure.................................... -999
6.3.1.34. Clear_xfail Procedure... -999
6.3.1.35. Verbose Procedure.. -999
6.3.1.36. Load_lib Procedure... -999

6.3.2. Procedures For Remote Communication... -999
6.3.2.1. Call_remote Procedure.. -999
6.3.2.2. Check_for_board_status Procedure...................................... -999
6.3.2.3. File_on_build Procedure... -999
6.3.2.4. File_on_host Procedure.. -999
6.3.2.5. Local_exec Procedure... -999
6.3.2.6. Remote_binary Procedure... -999
6.3.2.7. Remote_close Procedure... -999
6.3.2.8. Remote_download Procedure... -999
6.3.2.9. Remote_exec Procedure.. -999
6.3.2.10. Remote_expect Procedure.. -999
6.3.2.11. Remote_file Procedure.. -999
6.3.2.12. Remote_ld Procedure.. -999
6.3.2.13. Remote_load Procedure.. -999
6.3.2.14. Remote_open Procedure... -999

5

6.3.2.15. Remote_pop_conn Procedure... -999
6.3.2.16. Remote_push_conn Procedure.. -999
6.3.2.17. Remote_raw_binary Procedure... -999
6.3.2.18. Remote_raw_close Procedure... -999
6.3.2.19. Remote_raw_file Procedure.. -999
6.3.2.20. remote_raw_ld Procedure... -999
6.3.2.21. Remote_raw_load Procedure.. -999
6.3.2.22. Remote_raw_open Procedure... -999
6.3.2.23. Remote_raw_send Procedure.. -999
6.3.2.24. Remote_raw_spawn Procedure... -999
6.3.2.25. Remote_raw_transmit Procedure.. -999
6.3.2.26. Remote_raw_wait Procedure.. -999
6.3.2.27. Remote_reboot Procedure... -999
6.3.2.28. Remote_send Procedure.. -999
6.3.2.29. Remote_spawn Procedure... -999
6.3.2.30. Remote_swap_conn Procedure... -999
6.3.2.31. Remote_transmit Procedure.. -999
6.3.2.32. Remote_upload Procedure.. -999
6.3.2.33. Remote_wait Procedure.. -999
6.3.2.34. Standard_close Procedure... -999
6.3.2.35. Standard_download Procedure... -999
6.3.2.36. Standard_exec Procedure.. -999
6.3.2.37. Standard_file Procedure.. -999
6.3.2.38. Standard_load Procedure.. -999
6.3.2.39. Standard_reboot Procedure... -999
6.3.2.40. Standard_send Procedure.. -999
6.3.2.41. Standard_spawn Procedure... -999
6.3.2.42. Standard_transmit Procedure.. -999
6.3.2.43. Standard_upload Procedure.. -999
6.3.2.44. Standard_wait Procedure.. -999
6.3.2.45. Unix_clean_filename Procedure... -999

6.3.3. Procedures For Using Utilities to Connect...................................... -999
6.3.3.1. telnet Procedure.. -999
6.3.3.2. rsh Procedure.. -999

6

6.3.3.3. Tip Procedure.. -999
6.3.3.4. Kermit Procedure.. -999
6.3.3.5. kermit_open Procedure... -999
6.3.3.6. Kermit_command Procedure.. -999
6.3.3.7. Kermit_send Procedure... -999
6.3.3.8. Kermit_transmit Procedure... -999
6.3.3.9. Telnet_open Procedure.. -999
6.3.3.10. Telnet_binary Procedure... -999
6.3.3.11. Telnet_transmit Procedure.. -999
6.3.3.12. Tip_open Procedure.. -999
6.3.3.13. Rlogin_open Procedure... -999
6.3.3.14. Rlogin_spawn Procedure.. -999
6.3.3.15. Rsh_open Procedure... -999
6.3.3.16. Rsh_download Procedure... -999
6.3.3.17. Rsh_upload Procedure.. -999
6.3.3.18. Rsh_exec Procedure.. -999
6.3.3.19. Ftp_open Procedure.. -999
6.3.3.20. Ftp_upload Procedure... -999
6.3.3.21. Ftp_download Procedure.. -999
6.3.3.22. Ftp_close Procedure.. -999
6.3.3.23. Tip_download Procedure.. -999

6.3.4. Procedures For Target Boards.. -999
6.3.4.1. Default_link Procedure... -999
6.3.4.2. Default_target_assemble Procedure...................................... -999
6.3.4.3. default_target_compile Procedure.. -999
6.3.4.4. Pop_config Procedure... -999
6.3.4.5. Prune_warnings Procedure... -999
6.3.4.6. Push_build Procedure... -999
6.3.4.7. push_config Procedure.. -999
6.3.4.8. Reboot_target Procedure... -999
6.3.4.9. Target_assemble Procedure... -999
6.3.4.10. Target_compile Procedure.. -999

6.3.5. Target Database Procedures... -999
6.3.5.1. Board_info Procedure... -999

7

6.3.5.2. Host_info Procedure... -999
6.3.5.3. Set_board_info Procedure... -999
6.3.5.4. Set_currtarget_info Procedure.. -999
6.3.5.5. Target_info Procedure... -999
6.3.5.6. Unset_board_info Procedure.. -999
6.3.5.7. Unset_currtarget_info Procedure.. -999
6.3.5.8. Push_target Procedure.. -999
6.3.5.9. Pop_target Procedure.. -999
6.3.5.10. List_targets Procedure.. -999
6.3.5.11. Push_host Procedure... -999
6.3.5.12. Pop_host Procedure.. -999
6.3.5.13. Compile Procedure.. -999
6.3.5.14. Archive Procedure... -999
6.3.5.15. Ranlib Procedure... -999
6.3.5.16. Execute_anywhere Procedure... -999

6.3.6. Platform Dependant Procedures.. -999
6.3.6.1. ${tool}_start Procedure.. -999
6.3.6.2. ${tool}_load Procedure.. -999
6.3.6.3. ${tool}_exit Procedure... -999
6.3.6.4. ${tool}_version Procedure.. -999

6.3.7. Utility Procedures.. -999
6.3.7.1. Getdirs Procedure.. -999
6.3.7.2. Find Procedure.. -999
6.3.7.3. Which Procedure... -999
6.3.7.4. Grep Procedure... -999
6.3.7.5. Prune Procedure.. -999
6.3.7.6. Slay Procedure.. -999
6.3.7.7. Absolute Procedure... -999
6.3.7.8. Psource Procedure... -999
6.3.7.9. Runtest_file_p Procedure.. -999
6.3.7.10. Diff Procedure... -999
6.3.7.11. Setenv Procedure... -999
6.3.7.12. unsetenv Procedure... -999
6.3.7.13. Getenv Procedure.. -999

8

6.3.7.14. Prune_system_crud Procedure.. -999
6.3.8. Libgloss, A Free BSP... -999

6.3.8.1. Libgloss_link_flags Procedure.. -999
6.3.8.2. Libgloss_include_flags Procedure.. -999
6.3.8.3. Newlib_link_flags Procedure.. -999
6.3.8.4. Newlib_include_flags Procedure.. -999
6.3.8.5. Libio_include_flags Procedure... -999
6.3.8.6. Libio_link_flags Procedure... -999
6.3.8.7. G++_include_flags Procedure... -999
6.3.8.8. G++_link_flags Procedure.. -999
6.3.8.9. Libstdc++_include_flags Procedure..................................... -999
6.3.8.10. Libstdc++_link_flags Procedure... -999
6.3.8.11. Get_multilibs Procedure... -999
6.3.8.12. Find_binutils_prog Procedure... -999
6.3.8.13. Find_gcc Procedure.. -999
6.3.8.14. Find_gcj Procedure... -999
6.3.8.15. Find_g++ Procedure... -999
6.3.8.16. Find_g77 Procedure.. -999
6.3.8.17. Process_multilib_options Procedure................................... -999
6.3.8.18. Add_multilib_option Procedure.. -999
6.3.8.19. Find_gas Procedure... -999
6.3.8.20. Find_ld Procedure... -999
6.3.8.21. Build_wrapper Procedure... -999
6.3.8.22. Winsup_include_flags Procedure.. -999
6.3.8.23. Winsup_link_flags Procedure... -999

6.3.9. Procedures for debugging your Tcl code... -999
6.3.9.1. Dumpvars Procedure... -999
6.3.9.2. Dumplocals Procedure.. -999
6.3.9.3. Dumprocs Procedure... -999
6.3.9.4. Dumpwatch Procedure.. -999
6.3.9.5. Watcharray Procedure... -999
6.3.9.6. Watchvar Procedure.. -999
6.3.9.7. Watchunset Procedure... -999
6.3.9.8. Watchwrite Procedure... -999

9

6.3.9.9. Watchread Procedure.. -999
6.3.9.10. Watchdel Procedure.. -999
6.3.9.11. Print Procedure.. -999
6.3.9.12. Quit Procedure.. -999

6.4. File Map.. -999

7. Unit Testing API... -999

7.1. C Unit Testing API.. -999
7.1.1. Pass Function... -999
7.1.2. Fail Function.. -999
7.1.3. Untested Function.. -999
7.1.4. Unresolved Function.. -999
7.1.5. Totals Function... -999

7.2. C++ Unit Testing API... -999
7.2.1. Pass Method... -999
7.2.2. Fail Method.. -999
7.2.3. Untested Method.. -999
7.2.4. Unresolved Method.. -999
7.2.5. Totals Method.. -999

10

List of Tables
3-1. Tcl Variables For Command Line Options... -999
4-1. Common Board Info Fields.. -999
4-2. Board Info Fields For GCC & GDB... -999

List of Examples
2-1. Here is a short sample summary log... -999
2-2. Here is a brief example showing a detailed log for G++ tests............................ -999
2-3. The log messages begin with a message of the form... -999
2-4. Here is an excerpt from the debugging log for a GDB test:............................... -999
3-1. The first section starts with... -999
3-2. The first section ends with this line.. -999
3-3. Local Config File.. -999
3-4. Global Config file... -999
3-5. Board Config File... -999
3-6. Remote host setup... -999
3-7. Add The Board Directory... -999
3-8. Setup Cross Remote Testing... -999
3-9. Setup Native Remote Testing... -999
3-10. Run Test Remotely... -999
3-11. Run a Test Remotely... -999
3-12. Personal Config File... -999
4-6. Testing a New Board Config File... -999
4-7. Example Board Config File.. -999
6-1. Specifying the conditional xfail data.. -999

11

Abstract
This document attempts to describe the functionality of DejaGnu, the GNU Testing
Framework. DejaGnu is entirely written in Expect, which uses Tcl as a command
language. Expect serves as a very programmable shell; you can run any program, as
with the usual Unix command shells—but once the program is started, your test script
has fully programmable control of its input and output. This does not just apply to the
programs under test;expectcan also run any auxiliary program, such asdiff or sh, with
full control over its input and output.

DejaGnu itself is merely a framework for creation of a test suites. Test suites are
distributed separately for each GNU tool.

12

Chapter 1. Overview

1.1. What is DejaGnu ?
DejaGnu is a framework for testing other programs. Its purpose is to provide a single
front end for all tests. Think of it as a custom library of Tcl procedures crafted to
support writing a test harness. ATest Harnessis the testing infrastructure that is created
to support a specific program or tool. Each program can have multiple test suites, all
supported by a single test harness. DejaGnu is written in Expect, which in turn uses Tcl
– Tool command language. There is more information on Tcl at the Scriptics
(http://www.scriptics.com) web site, and the Expect web site is at NIST
(http://expect.nist.gov).

DejaGnu offers several advantages for testing:

• The flexibility and consistency of the DejaGnu framework make it easy to write tests
for any program, with either batch oriented, or interactive programs.

• DejaGnu provides a layer of abstraction which allows you to write tests that are
portable to any host or target where a program must be tested. For instance, a test for
GDB can run (from any Unix based host) on any target architecture that DejaGnu
supports. Currently DejaGnu runs tests on many single board computers, whose
operating software ranges from just a boot monitor to a full-fledged, Unix-like
realtime OS.

• All tests have the same output format. This makes it easy to integrate testing into
other software development processes. DejaGnu’s output is designed to be parsed by
other filtering script, and it is also human readable.

• Using Tcl and expect, it’s easy to create wrappers for existing test suites. By
incorporating existing tests under DejaGnu, it’s easier to have a single set of report
analyse programs..

Running tests requires two things: the testing framework, and the test suites
themselves. Tests are usually written in Expect using Tcl, but you can also use a Tcl
script to run a test suite that is not based on Expect. (expect script filenames

13

Chapter 1. Overview

conventionally use.expas a suffix; for example, the main implementation of the
DejaGnu test driver is in the file runtest.exp.)

Julia Menapace first coined the term “Deja Gnu” to describe an earlier testing
framework at Cygnus Support she had written forGDB. When we replaced it with the
Expect-based framework, it was like DejaGnu all over again... But more importantly, it
was also named after my daughter,Deja Snow Savoye (mailto:deja@welcomehome.org)
(now 9 years old in Dec of 1998), who was a toddler during DejaGnu’s creation.

1.2. What’s New In This Release
This release has a number of substantial changes over version 1.3. The most visible
change is that the version of Expect and Tcl included in the release are up-to-date with
the current stable net releases. The biggest change is years of modifications to the target
configuration system, used for cross testing. While this greatly improved cross testing,
is has made that subsystem very complicated. The goal is to have this entirely rewritten
using iTcl by the next release. Other changes are:

• More builtin support for building target binaries with the correct linker flags.
Currently this only works with GCC as the cross compiler, preferably with a target
supported by Libgloss.

• Lots of little bug fixes from years of heavy use at Cygnus Solutions.

• DejaGnu now uses Automake for Makefile configuration.

• Updated documentation, now in SGML (using the free GNU DocBook tools
(http://nis-www.lanl.gov/~rosalia/mydocs/docbook-intro.html)) format.

• NT support. There is beta level support for NT that is still a work in progress. This
requires the Cygwin (http://sources.redhat.com) POSIX system for NT.

14

Chapter 1. Overview

1.2.1. NT Support
To use DejaGnu on NT, you need to first install the Cygwin
(http://sources.redhat.com/cygwin) release. This works as of the B20.1 release. Cygwin
is a POSIX system for NT. This covers both utility programs, and a libray that adds
POSIX system calls to NT. Among them is pseudo tty support for NT that emulates the
POSIX pty standard. The latest Cygwin is always available from this location
(http://sources.redhat.com/cygwin). This works well enough to run"make check"of the
GNU development tree on NT after a native build. But the nature of pty’s on NT is still
evolving. Your mileage may vary...

1.3. Design Goals
DejaGnu grew out of the internal needs of Cygnus Solutions. (then Cygnus Support).
Cygnus maintained and enhanced a variety of free programs in many different
environments, and we needed a testing tool that:

• was useful to developers while fixing bugs.

• automated running many tests during a software release process.

• was portable among a variety of host computers.

• supported cross-development testing.

• permited testing interactive programs, likeGDB; and

• permited testing batch oriented programs, likeGCC.

Some of the requirements proved challenging. For example, interactive programs do
not lend themselves very well to automated testing. But all the requirements are
important: for instance, it is imperative to make sure thatGDB works as well when
cross-debugging as it does in a native configuration.

Probably the greatest challenge was testing in a cross-development environment (which
can be a real nightmare). Most cross-development environments are customized by

15

Chapter 1. Overview

each developer. Even when buying packaged boards from vendors there are many
differences. The communication interfaces vary from a serial line to ethernet. DejaGnu
was designed with a modular communication setup, so that each kind of
communication can be added as required, and supported thereafter. Once a
communication procedure is coded, any test can use it. Currently DejaGnu can usersh,
rlogin , telnet, tip , kermit , andmondfe for remote communications.

1.4. A POSIX conforming test framework
DejaGnu conforms to the POSIX 1003.3 standard for test frameworks. I was also a
member of that committe.

The POSIX standard 1003.3 defines what a testing framework needs to provide, in
order to permit the creation of POSIX conformance test suites. This standard is
primarily oriented to running POSIX conformance tests, but its requirements also
support testing of features not related to POSIX conformance. POSIX 1003.3 does not
specify a particular testing framework, but at this time there is only one other POSIX
conforming test framework: TET. TET was created by Unisoft for a consortium
comprised of X/Open, Unix International, and the Open Software Foundation.

The POSIX documentation refers toassertions. An assertion is a description of
behavior. For example, if a standard says “The sun shall shine”, a corresponding
assertion might be “The sun is shining.” A test based on this assertion would pass or
fail depending on whether it is daytime or nighttime. It is important to note that the
standard being tested is never 1003.3; the standard being tested is some other standard,
for which the assertions were written.

As there is no test suite to test testing frameworks for POSIX 1003.3 conformance,
verifying conformance to this standard is done by repeatedly reading the standard and
experimenting. One of the main things 1003.3 does specify is the set of allowed output
messages, and their definitions. Four messages are supported for a required feature of
POSIX conforming systems, and a fifth for a conditional feature. DejaGnu supports the
use of all five output messages; in this sense a test suite that uses exactly these
messages can be considered POSIX conforming. These definitions specify the output of

16

Chapter 1. Overview

a test case:

PASS

A test has succeeded. That is, it demonstrated that the assertion is true.

XFAIL

POSIX 1003.3 does not incorporate the notion of expected failures, soPASS,
instead ofXPASS, must also be returned for test cases which were expected to fail
and did not. This means thatPASSis in some sense more ambiguous than if
XPASSis also used.

FAIL

A test has produced the bug it was intended to capture. That is, it has demonstrated
that the assertion is false. TheFAIL message is based on the test case only. Other
messages are used to indicate a failure of the framework. As withPASS, POSIX
tests must returnFAIL rather thanXFAIL even if a failure was expected.

UNRESOLVED

A test produced indeterminate results. Usually, this means the test executed in an
unexpected fashion; this outcome requires that a human being go over results, to
determine if the test should have passed or failed. This message is also used for
any test that requires human intervention because it is beyond the abilities of the
testing framework. Any unresolved test should resolved toPASSor FAIL before a
test run can be considered finished.

Note that for POSIX, each assertion must produce a test result code. If the test
isn’t actually run, it must produceUNRESOLVEDrather than just leaving that test
out of the output. This means that you have to be careful when writing tests, to not
carelessly use tcl statements likereturn—if you alter the flow of control of the tcl
code you must insure that every test still produces some result code.

Here are some of the ways a test may wind upUNRESOLVED:

17

Chapter 1. Overview

• A test’s execution is interrupted.

• A test does not produce a clear result. This is usually because there was anERROR
from DejaGnu while processing the test, or because there were three or more
WARNINGmessages. AnyWARNINGor ERRORmessages can invalidate the output
of the test. This usually requires a human being to examine the output to determine
what really happened—and to improve the test case.

• A test depends on a previous test, which fails.

• The test was set up incorrectly.

UNTESTED

A test was not run. This is a placeholder, used when there is no real test case yet.

The only remaining output message left is intended to test features that are specified by
the applicable POSIX standard as conditional:

UNSUPPORTED

There is no support for the tested case. This may mean that a conditional feature
of an operating system, or of a compiler, is not implemented. DejaGnu also uses
this message when a testing environment (often a “bare board” target) lacks basic
support for compiling or running the test case. For example, a test for the system
subroutinegethostnamewould never work on a target board running only a boot
monitor.

DejaGnu uses the same output procedures to produce these messages for all test suites,
and these procedures are already known to conform to POSIX 1003.3. For a DejaGnu
test suite to conform to POSIX 1003.3, you must avoid thesetupxfail} procedure as
described in thePASSsection above, and you must be careful to returnUNRESOLVED
where appropriate, as described in theUNRESOLVEDsection above.

18

Chapter 2. Running Tests
There are two ways to execute a test suite. The most common way is when there is
existing support in theMakefile . This support consists of achecktarget. The other
way is to execute theruntest program directly. To runruntest directcly from the
command line requires either all the correct options, or the Local Config File must be
setup correctly.

2.1. Make check
To run tests from an existing collection, first useconfigureas usual to set up the build
directory. Then try typing:

make check

If the checktarget exists, it usually saves you some trouble. For instance, it can set up
any auxiliary programs or other files needed by the tests. The most common file the
check builds is thesite.exp. The site.exp file contains various variables that DejaGnu
used to dertermine the configuration of the program being tested. This is mostly for
supporting remote testing.

Thechecktarget is supported by GNU Automake. To have DejaGnu support added to
your generatedMakefile.in , just add the keyword dejagnu to the
AUTOMAKE_OPTIONS variable in yourMakefile.am file.

Once you have runmake checkto build any auxiliary files, you can invoke the test
driver runtest directly to repeat the tests. You will also have to executeruntest directly
for test collections with nochecktarget in theMakefile .

19

Chapter 2. Running Tests

2.2. Runtest
runtest is the executable test driver for DejaGnu. You can specify two kinds of things
on theruntest command line: command line options, and Tcl variables for the test
scripts. The options are listed alphabetically below.

runtest returns an exit code of1 if any test has an unexpected result; otherwise (if all
tests pass or fail as expected) it returns0 as the exit code.

2.2.1. Output States
runtest flags the outcome of each test as one of these cases. A POSIX Conforming
Test Framework for a discussion of how POSIX specifies the meanings of these cases.

PASS

The most desirable outcome: the test succeeded, and was expected to succeed.

XPASS

A pleasant kind of failure: a test was expected to fail, but succeeded. This may
indicate progress; inspect the test case to determine whether you should amend it
to stop expecting failure.

FAIL

A test failed, although it was expected to succeed. This may indicate regress;
inspect the test case and the failing software to ocate the bug.

XFAIL

A test failed, but it was expected to fail. This result indicates no change in a
known bug. If a test fails because the operating system where the test runs lacks
some facility required by the test, the outcome isUNSUPPORTEDinstead.

UNRESOLVED

Output from a test requires manual inspection; the test suite could not

20

Chapter 2. Running Tests

automatically determine the outcome. For example, your tests can report this
outcome is when a test does not complete as expected.

UNTESTED

A test case is not yet complete, and in particular cannot yet produce aPASSor
FAIL. You can also use this outcome in dummy “tests” that note explicitly the
absence of a real test case for a particular property.

UNSUPPORTED

A test depends on a conditionally available feature that does not exist (in the
configured testing environment). For example, you can use this outcome to report
on a test case that does not work on a particular target because its operating
system support does not include a required subroutine.

runtest may also display the following messages:

ERROR

Indicates a major problem (detected by the test case itself) in running the test. This
is usually an unrecoverable error, such as a missing file or loss of communication
to the target. (POSIX test suites should not emit this message; use
UNSUPPORTED, UNTESTED, or UNRESOLVEDinstead, as appropriate.)

WARNING

Indicates a possible problem in running the test. Usually warnings correspond to
recoverable errors, or display an important message about the following tests.

NOTE

An informational message about the test case.

2.2.2. Invoking Runtest
This is the full set of command line options thatruntest recognizes. Arguments may

21

Chapter 2. Running Tests

be abbreviated to the shortest unique string.

-all (-a)

Display all test output. By default,runtestshows only the output of tests that
produce unexpected results; that is, tests with statusFAIL (unexpected failure),
XPASS(unexpected success), orERROR(a severe error in the test case itself).
Specify–all to see output for tests with statusPASS(success, as expected)XFAIL
(failure, as expected), orWARNING(minor error in the test case itself).

-build [string]

string is a full configuration “triple” name as used byconfigure. This is the type
of machine DejaGnu and the tools to be tested are built on. For a normal cross this
is the same as the host, but for a canadian cross, they are seperate.

-host [string]

string is a full configuration “triple” name as used byconfigure. Use this option to
override the default string recorded by your configuration’s choice of host. This
choice does not change how anything is actually configured unless –build is also
specified; it affectsonlyDejaGnu procedures that compare the host string with
particular values. The proceduresishost, istarget, isnative, andsetupxfail} are
affected by–host. In this usage,hostrefers to the machine that the tests are to be
run on, which may not be the same as thebuild machine. If–build is also
specified, then–hostrefers to the machine that the tests wil, be run on, not the
machine DejaGnu is run on.

-host_board [name]

The host board to use.

-target [string]

Use this option to override the default setting (running native tests).string is a full
configuration “triple” name of the formcpu-vendor-osas used byconfigure. This
option changes the configurationruntestuses for the default tool names, and other
setup information.

22

Chapter 2. Running Tests

-debug (-de)

Turns on theexpectinternal debugging output. Debugging output is displayed as
part of theruntestoutput, and logged to a file calleddbg.log . The extra
debugging output doesnot appear on standard output, unless the verbose level is
greater than 2 (for instance, to see debug output immediately, specify–debug-v
-v}). The debugging output shows all attempts at matching the test output of the
tool with the scripted patterns describing expected output. The output generated
with –stracealso goes intodbg.log .

-help (-he)

Prints out a short summary of theruntestoptions, then exits (even if you also
specify other options).

-ignore [name(s)]

The names of specific tests to ignore.

-objdir [path]

Usepathas the top directory containing any auxiliary compiled test code. This
defaults to. . Use this option to locate pre-compiled test code. You can normally
prepare any auxiliary files needed withmake.

-outdir [path]

Write output logs in directorypath . The default is.}, thedirectory where you
startruntest. This option affects only the summary and the detailed log files
tool.sum andtool.log . The DejaGnu debug logdbg.log always appears
(when requested) in the local directory.

-reboot [name]

Reboot the target board whenruntestinitializes. Usually, when running tests on a
separate target board, it is safer to reboot the target to be certain of its state.
However, when developing test scripts, rebooting takes a lot of time.

23

Chapter 2. Running Tests

-srcdir [path]

Usepath as the top directory for test scripts to run.runtestlooks in this directory
for any subdirectory whose name begins with the toolname (specified with–tool).
For instance, with–toolgdb}, runtestuses tests in subdirectoriesgdb.* (with the
usual shell-like filename expansion). If you do not use–srcdir, runtestlooks for
test directories under the current working directory.

-strace [number]

Turn on internal tracing forexpect, to n levels deep. By adjusting the level, you
can control the extent to which your output expands multi-level Tcl statements.
This allows you to ignore some levels ofcaseor if statements. Each procedure
call or control structure counts as one “level”. The output is recorded in the same
file, dbg.log , used for output from–debug.

-connect [program]

Connect to a target testing environment as specified bytype, if the target is not the
computer runningruntest. For example, use–connectto change the program used
to connect to a “bare board” boot monitor. The choices fortypein the DejaGnu 1.4
distribution arerlogin, telnet, rsh, tip, kermit, andmondfe.

The default for this option depends on the configuration most convenient
communication method available, but often other alternatives work as well; you
may find it useful to try alternative connect methods if you suspect a
communication problem with your testing target.

-baud [number]

Set the default baud rate to something other than 9600. (Some serial interface
programs, liketip, use a separate initialization file instead of this value.)

-target_board [name(s)]

The list of target boards to run tests on.

24

Chapter 2. Running Tests

-tool[name(s)]

Specifies which test suite to run, and what initialization module to use.-tool is
usedonly for these two purposes. It isnot used to name the executable program to
test. Executable tool names (and paths) are recorded insite.exp and you can
override them by specifying Tcl variables on the command line.

For example, including "-tool gcc" on theruntestcommand line runs tests from
all test subdirectories whose names matchgcc.* , and uses one of the
initialization modules namedconfig/*-gcc.exp . To specify the name of the
compiler (perhaps as an alternative path to whatruntestwould use by default), use
GCC=binnameon theruntestcommand line.

-tool_exec [name]

The path to the tool executable to test.

-tool_opts [options]

A list of additional options to pass to the tool.

-verbose (-v)

Turns on more output. Repeating this option increases the amount of output
displayed. Level one (-v) is simply test output. Level two (-v-v}) shows messages
on options, configuration, and process control. Verbose messages appear in the
detailed (*.log) log file, but not in the summary (*.sum) log file.

-version (-V)

Prints out the version numbers of DejaGnu,expectand Tcl, and exits without
running any tests.

-D[0-1]

Start the internal Tcl debugger. The Tcl debugger supports breakpoints, single
stepping, and other common debugging activities. See the document "Debugger
for Tcl Applications" by Don Libes. (Distributed in PostScript form withexpectas
the fileexpect/tcl-debug.ps. . If you specify-D1, theexpectshell stops at a

25

Chapter 2. Running Tests

breakpoint as soon as DejaGnu invokes it. If you specify-D0, DejaGnu starts as
usual, but you can enter the debugger by sending an interrupt (e.g. by typingC-c).

testfile .exp[=arg(s)]

Specify the names of testsuites to run. By default,runtestruns all tests for the tool,
but you can restrict it to particular testsuites by giving the names of the.exp expect
scripts that control them.testsuite.exp may not include path information; use plain
filenames.

testfile .exp="testfile1 ..."

Specify a subset of tests in a suite to run. For compiler or assembler tests, which
often use a single.expscript covering many different source files, this option
allows you to further restrict the tests by listing particular source files to compile.
Some tools even support wildcards here. The wildcards supported depend upon
the tool, but typically they are?, * , and[chars].

tclvar=value

You can define Tcl variables for use by your test scripts in the same style used
with makefor environment variables. For example,runtest GDB=gdb.olddefines
a variable calledGDB; when your scripts refer to $GDB in this run, they use the
valuegdb.old.

The default Tcl variables used for most tools are defined in the main DejaGnu
Makefile; their values are captured in thesite.exp file.

2.2.3. Common Options
Typically, you don’t need must to use any command-line options.-tool used is only
required when there are more than one test suite in the same directory. The default
options are in the local site.exp file, created by "make site.exp".

For example, if the directorygdb/testsuite contains a collection of DejaGnu tests
for GDB, you can run them like this:

26

Chapter 2. Running Tests

eg$ cd gdb/testsuite
eg$ runtest -tool gdb

Test output follows, ending with:

=== gdb Summary ===

of expected passes 508
of expected failures 103
/usr/latest/bin/gdb version 4.14.4 -nx

You can use the option–srcdir to point to some other directory containing a collection
of tests:

eg$ runtest-srcdir /devo/gdb/testsuite

By default,runtest prints only the names of the tests it runs, output from any tests that
have unexpected results, and a summary showing how many tests passed and how
many failed. To display output from all tests (whether or not they behave as expected),
use the–all option. For more verbose output about processes being run,
communication, and so on, use–verbose. To see even more output, use multiple
–verboseoptions. for a more detailed explanation of eachruntest option.

Test output goes into two files in your current directory: summary output intool.sum ,
and detailed output intool.log . (tool refers to the collection of tests; for example,
after a run with–toolgdb, look for output filesgdb.sum andgdb.log .)

2.3. The files DejaGnu produces.
DejaGnu always writes two kinds of output files: summary logs and detailed logs. The
contents of both of these are determined by your tests.

For troubleshooting, a third kind of output file is useful: use-debug to request an
output file showing details of what Expect is doing internally.

27

Chapter 2. Running Tests

2.3.1. Summary File
DejaGnu always produces a summary output filetool.sum . This summary shows the
names of all test files run; for each test file, one line of output from eachpasscommand
(showing statusPASSor XPASS) or fail command (statusFAIL or XFAIL); trailing
summary statistics that count passing and failing tests (expected and unexpected); and
the full pathname and version number of the tool tested. (All possible outcomes, and all
errors, are always reflected in the summary output file, regardless of whether or not you
specify-all .)

If any of your tests use the proceduresunresolved, unsupported, or runtested, the
summary output also tabulates the corresponding outcomes.

For example, afterruntest –tool binutils, look for a summary log inbinutils.sum .
Normally, DejaGnu writes this file in your current working directory; use the-outdir

option to select a different directory.

Example 2-1. Here is a short sample summary log

Test Run By rob on Mon May 25 21:40:57 PDT 1992
=== gdb tests ===

Running ./gdb.t00/echo.exp ...
PASS: Echo test
Running ./gdb.all/help.exp ...
PASS: help add-symbol-file
PASS: help aliases
PASS: help breakpoint "bre" abbreviation
FAIL: help run "r" abbreviation
Running ./gdb.t10/crossload.exp ...
PASS: m68k-elf (elf-big) explicit format; loaded
XFAIL: mips-ecoff (ecoff-
bigmips) "ptype v_signed_char" signed C types

=== gdb Summary ===
of expected passes 5
of expected failures 1
of unexpected failures 1
/usr/latest/bin/gdb version 4.6.5 -q

28

Chapter 2. Running Tests

2.3.2. Log File
DejaGnu also saves a detailed log filetool.log , showing any output generated by
tests as well as the summary output. For example, afterruntest –tool binutils, look for
a detailed log inbinutils.log . Normally, DejaGnu writes this file in your current
working directory; use the-outdir option to select a different directory.

Example 2-2. Here is a brief example showing a detailed log for G++ tests

Test Run By rob on Mon May 25 21:40:43 PDT 1992

=== g++ tests ===

-- Running ./g++.other/t01-1.exp --
PASS: operate delete

-- Running ./g++.other/t01-2.exp --
FAIL: i960 bug EOF

p0000646.C: In function ‘int warn_return_1 ()’:
p0000646.C:109: warning: control reaches end of non-
void function
p0000646.C: In function ‘int warn_return_arg (int)’:
p0000646.C:117: warning: control reaches end of non-
void function
p0000646.C: In function ‘int warn_return_sum (int, int)’:
p0000646.C:125: warning: control reaches end of non-
void function
p0000646.C: In function ‘struct foo warn_return_foo ()’:
p0000646.C:132: warning: control reaches end of non-
void function

-- Running ./g++.other/t01-4.exp --
FAIL: abort

29

Chapter 2. Running Tests

900403_04.C:8: zero width for bit-field ‘foo’
-- Running ./g++.other/t01-3.exp --

FAIL: segment violation
900519_12.C:9: parse error before ‘;’
900519_12.C:12: Segmentation violation
/usr/latest/bin/gcc: Internal compiler error: pro-
gram cc1plus got fatal signal

=== g++ Summary ===

of expected passes 1
of expected failures 3
/usr/latest/bin/g++ version cygnus-2.0.1

2.3.3. Debug Log File
With the-debug option, you can request a log file showing the output from Expect
itself, running in debugging mode. This file (dbg.log , in the directory where you start
runtest) shows each pattern Expect considers in analyzing test output.

This file reflects eachsendcommand, showing the string sent as input to the tool under
test; and each Expect command, showing each pattern it compares with the tool output.

Example 2-3. The log messages begin with a message of the form

expect: does {tool output} (spawn_id n)
match pattern { expected pattern }?

For every unsuccessful match, Expect issues anoafter this message; if other patterns
are specified for the same Expect command, they are reflected also, but without the first
part of the message (expect... match pattern).

30

Chapter 2. Running Tests

When Expect finds a match, the log for the successful match ends withyes, followed by
a record of the Expect variables set to describe a successful match.

Example 2-4. Here is an excerpt from the debugging log for a GDB test:

send: sent {break gdbme.c:34\n} to spawn id 6
expect: does {} (spawn_id 6) match pattern {Break-
point.*at.* file
gdbme.c, line 34.*\(gdb\) $}? no
{.*\(gdb\) $}? no
expect: does {} (spawn_id 0) match pattern {return} ? no
{\(y or n\) }? no
{buffer_full}? no
{virtual}? no
{memory}? no
{exhausted}? no
{Undefined}? no
{command}? no
break gdbme.c:34
Breakpoint 8 at 0x23d8: file gdbme.c, line 34.
(gdb) expect: does {break gdbme.c:34\r\nBreakpoint 8 at 0x23d8:
file gdbme.c, line 34.\r\n(gdb) } (spawn_id 6) match pattern
{Breakpoint.*at.* file gdbme.c, line 34.*\(gdb\) $}? yes
expect: set expect_out(0,start) {18}
expect: set expect_out(0,end) {71}
expect: set expect_out(0,string) {Breakpoint 8 at 0x23d8: file
gdbme.c, line 34.\r\n(gdb) }
epect: set expect_out(spawn_id) {6}
expect: set expect_out(buffer) {break gdbme.c:34\r\nBreakpoint 8
at 0x23d8: file gdbme.c, line 34.\r\n(gdb) }

PASS: 70 0 breakpoint line number in file

This example exhibits three properties of Expect and DejaGnu that might be surprising
at first glance:

31

Chapter 2. Running Tests

• Empty output for the first attempted match. The first set of attempted matches shown
ran against the output{} — that is, no output. Expect begins attempting to match the
patterns supplied immediately; often, the first pass is against incomplete output (or
completely before all output, as in this case).

• Interspersed tool output. The beginning of the log entry for the second attempted
match may be hard to spot: this is because the prompt{(gdb) } appears on the same
line, just before theexpect:that marks the beginning of the log entry.

• Fail-safe patterns. Many of the patterns tested are fail-safe patterns provided by GDB
testing utilities, to reduce possible indeterminacy. It is useful to anticipate potential
variations caused by extreme system conditions (GDB might issue the message
virtual memory exhaustedin rare circumstances), or by changes in the tested
program (Undefined commandis the likeliest outcome if the name of a tested
command changes).

The pattern{return} is a particularly interesting fail-safe to notice; it checks for an
unexpectedRET prompt. This may happen, for example, if the tested tool can filter
output through a pager.

These fail-safe patterns (like the debugging log itself) are primarily useful while
developing test scripts. Use theerror procedure to make the actions for fail-safe
patterns produce messages starting withERRORon standard output, and in the
detailed log file.

32

Chapter 3. Customizing DejaGnu
The site configuration file,site.exp , captures configuration-dependent values and
propagates them to the DejaGnu test environment using Tcl variables. This ties the
DejaGnu test scripts into theconfigureandmakeprograms. If this file is setup
correctly, it is possible to execute a test suite merely by typingruntest.

DejaGnu supports twosite.exp files. The multiple instances ofsite.exp are loaded
in a fixed order built into DejaGnu. The first file loaded is the local filesite.exp , and
then the optional globalsite.exp file as pointed to by the DEJAGNU environment
variable.

There is an optionalmastersite.exp , capturing configuration values that apply to
DejaGnu across the board, in each configuration-specific subdirectory of the DejaGnu
library directory.runtest loads these values first. The mastersite.exp contains the
default values for all targets and hosts supported by DejaGnu. This master file is
identified by setting the environment variable DEJAGNU to the name of the file. This is
also refered to as the “global” config file.

Any directory containing a configured test suite also has a localsite.exp , capturing
configuration values specific to the tool under test. Sinceruntest loads these values
last, the individual test configuration can either rely on and use, or override, any of the
global values from the globalsite.exp file.

You can usually generate or update the testsuite’s localsite.exp by typingmake
site.expin the test suite directory, after the test suite is configured.

You can also have a file in your home directory called.dejagnurc . This gets loaded
first before the other config files. Usually this is used for personal stuff, like setting the
all_flag so all the output gets printed, or your own verbosity levels. This file is usually
restricted to setting command line options.

You can further override the default values in a user-editable section of anysite.exp ,
or by setting variables on theruntest command line.

33

Chapter 3. Customizing DejaGnu

3.1. Local Config File
It is usually more convenient to keep thesemanual overridesin thesite.exp local to
each test directory, rather than in the globalsite.exp in the installed DejaGnu library.
This file is mostly for supplying tool specific info that is required by the test suite.

All local site.exp files have two sections, separated by comment text. The first
section is the part that is generated bymake. It is essentially a collection of Tcl variable
definitions based onMakefile environment variables. Since they are generated by
make, they contain the values as specified byconfigure. (You can also customize these
values by using the-site option toconfigure.) In particular, this section contains the
Makefile variables for host and target configuration data. Do not edit this first section;
if you do, your changes are replaced next time you runmake.

Example 3-1. The first section starts with

these variables are automatically generated by make
Do not edit here. If you wish to override these values
add them to the last section

In the second section, you can override any default values (locally to DejaGnu) for all
the variables. The second section can also contain your preferred defaults for all the
command line options toruntest. This allows you to easily customizeruntest for your
preferences in each configured test-suite tree, so that you need not type options
repeatedly on the command line. (The second section may also be empty, if you do not
wish to override any defaults.)

Example 3-2. The first section ends with this line

All variables above are generated by config-
ure. Do Not Edit ##

You can make any changes under this line. If you wish to redefine a variable in the top
section, then just put a duplicate value in this second section. Usually the values
defined in this config file are related to the configuration of the test run. This is the ideal

34

Chapter 3. Customizing DejaGnu

place to set the variables host_triplet, build_triplet, target_triplet. All other variables are
tool dependant. ie for testing a compiler, the value for CC might be set to a freshly built
binary, as opposed to one in the user’s path.

Here’s an example local site.exp file, as used for GCC/G++ testing.

Example 3-3. Local Config File

these variables are automatically generated by make
Do not edit here. If you wish to override these values
add them to the last section
set rootme "/build/devo-builds/i586-pc-linux-gnulibc1/gcc"
set host_triplet i586-pc-linux-gnulibc1
set build_triplet i586-pc-linux-gnulibc1
set target_triplet i586-pc-linux-gnulibc1
set target_alias i586-pc-linux-gnulibc1
set CFLAGS ""
set CXXFLAGS "-I/build/devo-builds/i586-pc-linux-

gnulibc1/gcc/../libio -I$srcdir/../libg++/src -
I$srcdir/../libio -I$srcdir/../libstdc++ -
I$srcdir/../libstdc++/stl -L/build/devo-builds/i586-pc-linux-
gnulibc1/gcc/../libg++ -L/build/devo-builds/i586-pc-linux-
gnulibc1/gcc/../libstdc++"

append LDFLAGS " -L/build/devo-builds/i586-pc-linux-
gnulibc1/gcc/../ld"

set tmpdir /build/devo-builds/i586-pc-linux-
gnulibc1/gcc/testsuite

set srcdir "${srcdir}/testsuite"
All variables above are generated by config-

ure. Do Not Edit ##

This file defines the required fields for a local config file, namely the three config
triplets, and the srcdir. It also defines several other Tcl variables that are used exclusivly
by the GCC test suite. For most test cases, the CXXFLAGS and LDFLAGS are

35

Chapter 3. Customizing DejaGnu

supplied by DejaGnu itself for cross testing, but to test a compiler, GCC needs to
manipulate these itself.

3.2. Global Config File
The master config file is where all the target specific config variables get set for a whole
site get set. The idea is that for a centralized testing lab where people have to share a
target between multiple developers. There are settings for both remote targets and
remote hosts. Here’s an example of a Master Config File (also called the Global config
file) for acanadian cross. A canadian cross is when you build and test a cross compiler
on a machine other than the one it’s to be hosted on.

Here we have the config settings for our California office. Note that all config values
are site dependant. Here we have two sets of values that we use for testing m68k-aout
cross compilers. As both of these target boards has a different debugging protocol, we
test on both of them in sequence.

Example 3-4. Global Config file

Make sure we look in the right place for the board de-
scription files.

if ![info exists boards_dir] {
set boards_dir {}

}
lappend boards_dir "/nfs/cygint/s1/cygnus/dejagnu/boards"

verbose "Global Config File: target_triplet is $tar-
get_triplet" 2

global target_list

case "$target_triplet" in {
{ "native" } {

set target_list "unix"
}

36

Chapter 3. Customizing DejaGnu

{ "sparc64-*elf" } {
set target_list "sparc64-sim"

}
{ "mips-*elf" } {

set target_list "mips-sim wilma barney"
}
{ "mips-lsi-elf" } {

set target_list "mips-lsi-sim{,soft-float,el}"
}
{ "sh-*hms" } {

set target_list { "sh-hms-sim" "bloozy" }
}

}

In this case, we have support for several cross compilers, that all run on this host. For
testing on operating systems that don’t support Expect, DejaGnu can be run on the
local build machine, and it can connect to the remote host and run all the tests for this
cross compiler on that host. All the remote OS requires is a working telnetd.

As you can see, all one does is set the variable target_list to the list of targets and
options to test. The simple settings, like forsparc64-elfonly require setting the name
of the single board config file. Themips-elf target is more complicated. Here it sets the
list to three target boards. One is the default mips target, and bothwilma barneyare
symbolic names for other mips boards. Symbolic names are covered in the Adding A
New Board chapter. The more complicated example is the one formips-lsi-elf. This
one runs the tests with multiple iterations using all possible combinations of the
-soft-float and the-el (little endian) option. Needless to say, this last feature is
mostly compiler specific.

3.3. Board Config File
The board config file is where board specfic config data is stored. A board config file
contains all the higher-level configuration settings. There is a rough inheritance

37

Chapter 3. Customizing DejaGnu

scheme, where it is possible to base a new board description file on an existing one.
There are also collections of custom procedures for common environments. For more
information on adding a new board config file, go to the Adding A New Board chapter.

An example board config file for a GNU simulator is as follows.set_board_info is a
procedure that sets the field name to the specified value. The procedures in square
brackets[] arehelper procedures. Thes are used to find parts of a tool chain required to
build an executable image that may reside in various locations. This is mostly of use for
when the startup code, the standard C lobraries, or the tool chain itself is part of your
build tree.

Example 3-5. Board Config File

This is a list of toolchains that are sup-
ported on this board.

set_board_info target_install {sparc64-elf}

Load the generic configura-
tion for this board. This will define any

routines needed by the tool to communi-
cate with the board.

load_generic_config "sim"

We need this for find_gcc and *_include_flags/*_link_flags.
load_base_board_description "basic-sim"

Use long64 by default.
process_multilib_options "long64"

setup_sim sparc64

We only support newlib on this target. We as-
sume that all multilib

options have been specified before we get here.
set_board_info compiler "[find_gcc]"
set_board_info cflags "[lib-

gloss_include_flags] [newlib_include_flags]"

38

Chapter 3. Customizing DejaGnu

set_board_info ldflags "[lib-
gloss_link_flags] [newlib_link_flags]"

No linker script.
set_board_info ldscript "";

Used by a few gcc.c-
torture testcases to delimit how large the

stack can be.
set_board_info gcc,stack_size 16384
The simulator doesn’t return exit sta-

tuses and we need to indicate this
the standard GCC wrapper will work with this target.
set_board_info needs_status_wrapper 1
We can’t pass arguments to programs.
set_board_info noargs 1

There are five helper procedures used in this example. The first one,find gcc looks
for a copy of the GNU compiler in your build tree, or it uses the one in your path. This
will also return the proper transformed name for a cross compiler if you whole build
tree is configured for one. The next helper procedures arelibgloss_include_flags

& libgloss_link_flags . These return the proper flags to compiler and link an
executable image using Libgloss, the GNU BSP (Board Support Package). The final
procedures arenewlib_include_flag & newlib_include_flag . These find the
Newlib C library, which is a reentrant standard C library for embedded systems
comprising of non GPL’d code.

3.4. Remote Host Testing

Note: Thanks to Dj Delorie for the original paper that this section is based on.

DejaGnu also supports running the tests on a remote host. To set this up, the remote
host needs an ftp server, and a telnet server. Currently foreign operating systems used

39

Chapter 3. Customizing DejaGnu

as remote hosts are VxWorks, VRTX, Dos/Win3.1, MacOS, and win95/win98/NT.

The recommended source for a win95/win98/NT based ftp server is to get IIS (either
IIS 1 or Personal Web Server) from http://www.microsoft.com. When you install it,
make sure you install the FTP server - it’s not selected by default. Go into the IIS
manager and change the FTP server so that it does not allow anonymous ftp. Set the
home directory to the root directory (i.e. c:\) of a suitable drive. Allow writing via ftp.

It will create an account like IUSR_FOOBAR where foobar is the name of your
machine. Go into the user editor and give that account a password that you don’t mind
hanging around in the clear (i.e. not the same as your admin or personal passwords).
Also, add it to all the various permission groups.

You’ll also need a telnet server. For win95/win98/NT, go to the Ataman
(http://ataman.com) web site, pick up the Ataman Remote Logon Services for
Windows, and install it. You can get started on the eval period anyway. Add
IUSR_FOOBAR to the list of allowed users, set the HOME directory to be the same as
the FTP default directory. Change the Mode prompt to simple.

Ok, now you need to pick a directory name to do all the testing in. For the sake of this
example, we’ll call it piggy (i.e. c:\piggy). Create this directory.

You’ll need a unix machine. Create a directory for the scripts you’ll need. For this
example, we’ll use /usr/local/swamp/testing. You’ll need to have a source tree
somewhere, say /usr/src/devo. Now, copy some files from releng’s area in SV to your
machine:

Example 3-6. Remote host setup

cd /usr/local/swamp/testing
mkdir boards
scp darkstar.welcomehome.org:/dejagnu/cst/bin/MkTestDir .
scp darkstar.welcomehome.org:/dejagnu/site.exp .
scp dark-

star.welcomehome.org:/dejagnu/boards/useless98r2.exp boards/foobar.exp
export DEJAGNU=/usr/local/swamp/testing/site.exp

40

Chapter 3. Customizing DejaGnu

You must edit the boards/foobar.exp file to reflect your machine; change the hostname
(foobar.com), username (iusr_foobar), password, and ftp_directory (c:/piggy) to match
what you selected.

Edit the global site.exp to reflect your boards directory:

Example 3-7. Add The Board Directory

lappend boards_dir "/usr/local/swamp/testing/boards"

Now run MkTestDir, which is in the contrib directory. The first parameter is the
toolchain prefix, the second is the location of your devo tree. If you are testing a cross
compiler (ex: you have sh-hms-gcc.exe in your PATH on the PC), do something like
this:

Example 3-8. Setup Cross Remote Testing

./MkTestDir sh-hms /usr/dejagnu/src/devo

If you are testing a native PC compiler (ex: you have gcc.exe in your PATH on the PC),
do this:

Example 3-9. Setup Native Remote Testing

./MkTestDir ” /usr/dejagnu/src/devo

To test the setup,ftp to your PC using the username (iusr_foobar) and password you
selected. CD to the test directory. Upload a file to the PC. Now telnet to your PC using
the same username and password. CD to the test directory. Make sure the file is there.
Type "set" and/or "gcc -v" (or sh-hms-gcc -v) and make sure the default PATH contains
the installation you want to test.

Example 3-10. Run Test Remotely

cd /usr/local/swamp/testing

41

Chapter 3. Customizing DejaGnu

make -k -w check RUNTESTFLAGS="-host_board foobar -
target_board foobar -v -v" > check.out 2>&1

To run a specific test, use a command like this (for this example, you’d run this from
the gcc directory that MkTestDir created):

Example 3-11. Run a Test Remotely

make check RUNTESTFLAGS="-host_board sloth -target_board sloth -
v compile.exp=921202-1.c"

Note: if you are testing a cross-compiler, put in the correct target board. You’ll also
have to download more .exp files and modify them for your local configuration. The
-v’s are optional.

3.5. Config File Values
DejaGnu uses a named array in Tcl to hold all the info for each machine. In the case of
a canadian cross, this means host information as well as target information. The named
array is called target_info, and it has two indices. The following fields are part of the
array.

3.5.1. Command Line Option Variables
In the user editable second section of the Personal Config File you can not only override
the configuration variables captured in the first section, but also specify default values
for all on theruntest command line options. Save for-debug , -help , and-version ,
each command line option has an associated Tcl variable. Use the Tclsetcommand to
specify a new default value (as for the configuration variables). The following table
describes the correspondence between command line options and variables you can set
in site.exp . Invoking Runtest, for explanations of the command-line options.

42

Chapter 3. Customizing DejaGnu

Table 3-1. Tcl Variables For Command Line Options

runtest Tcl option variabledescription

–all all_flag display all test results if set

–baud baud set the default baud rate to
something other than 9600.

–connect connectmode rlogin, telnet, rsh, kermit,
tip, or mondfe

–outdir outdir directory for tool.sum

and tool.log.

–objdir objdir directory for pre-compiled
binaries

–reboot reboot reboot the target if set to
"1"; do not reboot if set to
"0" (the default).

–srcdir srcdir directory of test
subdirectories

–strace tracelevel a number: Tcl trace depth

–tool tool name of tool to test;
identifies init, test subdir

–verbose verbose verbosity level. As option,
use multiple times; as
variable, set a number, 0 or
greater.

–target target_triplet The canonical
configuration string for the
target.

–host host_triplet The canonical
configuration string for the
host.

–build build_triplet The canonical
configuration string for the
build host.

43

Chapter 3. Customizing DejaGnu

runtest Tcl option variabledescription

–mail address Email the output log to the
specified address.

3.5.2. Personal Config File
The personal config file is used to customizeruntest’s behaviour for each person. It’s
typically used to set the user prefered setting for verbosity, and any experimental Tcl
procedures. My personal~/.dejagnurc file looks like:

Example 3-12. Personal Config File

set all_flag 1
set RLOGIN /usr/ucb/rlogin
set RSH /usr/local/sbin/ssh

Here I set all_flag so I see all the test cases that PASS along with the ones that FAIL. I
also set RLOGIN to the BSD version. I have Kerberos installed, and when I rlogin to a
target board, it usually isn’t supported. So I use the non secure version rather than the
default that’s in my path. I also set RSH to the SSH secure shell, as rsh is mostly used
to test unix machines within a local network here.

44

Chapter 4. Extending DejaGnu

4.1. Adding A New Test Suite
The testsuite for a new tool should always be located in that tools source directory.
DejaGnu require the directory be namedtestsuite . Under this directory, the test
cases go in a subdirectory whose name begins with the tool name. For example, for a
tool namedflubber, each subdirectory containing testsuites must start with"flubber.".

4.2. Adding A New Tool
In general, the best way to learn how to write (code or even prose) is to read something
similar. This principle applies to test cases and to test suites. Unfortunately,
well-established test suites have a way of developing their own conventions: as test
writers become more experienced with DejaGnu and with Tcl, they accumulate more
utilities, and take advantage of more and more features of Expect and Tcl in general.

Inspecting such established test suites may make the prospect of creating an entirely
new test suite appear overwhelming. Nevertheless, it is quite straightforward to get a
new test suite going.

There is one test suite that is guaranteed not to grow more elaborate over time: both it
and the tool it tests were created expressly to illustrate what it takes to get started with
DejaGnu. Theexample/ directory of the DejaGnu distribution contains both an
interactive tool calledcalc, and a test suite for it. Reading this test suite, and
experimenting with it, is a good way to supplement the information in this section.
(Thanks to Robert Lupton for creating calc and its test suite—and also the first version
of this section of the manual!)

To help orient you further in this task, here is an outline of the steps to begin building a
test suite for a program example.

45

Chapter 4. Extending DejaGnu

• Create or select a directory to contain your new collection of tests. Change into that
directory (shown here astestsuite):

Create aconfigure.in file in this directory, to control configuration-dependent
choices for your tests. So far as DejaGnu is concerned, the important thing is to set a
value for the variable target_abbrev; this value is the link to the init file you will write
soon. (For simplicity, we assume the environment is Unix, and useunixas the value.)

What else is needed inconfigure.in depends on the requirements of your tool,
your intended test environments, and which configure system you use. This example
is a minimal configure.in for use with GNU Autoconf.

• CreateMakefile.in (if you are using Autoconf), orMakefile.am (if you are using
Automake), the source file used by configure to build yourMakefile . If you are
using GNU Automake.just add the keyworddejagnuto theAUTOMAKE_OPTIONS
variable in yourMakefile.am file. This will add all the Makefile support needed to
run DejaGnu, and support the Make Check target.

You also need to include two targets important to DejaGnu:check, to run the tests,
andsite.exp, to set up the Tcl copies of configuration-dependent values. This is
called the Local Config File The check target must run theruntest program to
execute the tests.

Thesite.exp target should usually set up (among other things) the $tool variable
for the name of your program. If the local site.exp file is setup correctly, it is possible
to execute the tests by merely typingruntest on the command line.

Example 4-1. Sample Makefile.in Fragment

Look for a local version of DejaGnu, other-
wise use one in the path
RUNTEST = ‘if test -f $(top_srcdir)/../dejagnu/runtest; then \

echo $(top_srcdir) ../dejagnu/runtest; \
else \

echo runtest; \
fi‘

46

Chapter 4. Extending DejaGnu

The flags to pass to runtest
RUNTESTFLAGS =

Execute the tests
check: site.exp all

$(RUNTEST) $(RUNTESTFLAGS) \
-tool ${example} -srcdir $(srcdir)

Make the local config file
site.exp: ./config.status Makefile

@echo "Making a new config file..."
-@rm -f ./tmp?
@touch site.exp

-@mv site.exp site.bak
@echo "## these variables are automatically\

generated by make ##" > ./tmp0
@echo "# Do not edit here. If you wish to\

override these values" » ./tmp0
@echo "# add them to the last section" » ./tmp0
@echo "set host_os ${host_os}" » ./tmp0
@echo "set host_alias ${host_alias}" » ./tmp0
@echo "set host_cpu ${host_cpu}" » ./tmp0
@echo "set host_vendor ${host_vendor}" » ./tmp0
@echo "set target_os ${target_os}" » ./tmp0
@echo "set target_alias ${target_alias}" » ./tmp0
@echo "set target_cpu ${target_cpu}" » ./tmp0
@echo "set target_vendor ${tar-

get_vendor}" » ./tmp0
@echo "set host_triplet ${host_canonical}" » ./tmp0
@echo "set tar-

get_triplet ${target_canonical}"»./tmp0
@echo "set tool binutils" » ./tmp0
@echo "set srcdir ${srcdir}" » ./tmp0
@echo "set objdir ‘pwd‘" » ./tmp0
@echo "set ${examplename} ${example}" » ./tmp0
@echo "## All variables above are generated by\

47

Chapter 4. Extending DejaGnu

configure. Do Not Edit ##" » ./tmp0
@cat ./tmp0 > site.exp
@sed < site.bak \

-e ’1,/^## All variables above are.*##/ d’ \
» site.exp

-@rm -f ./tmp?

• Create a directory (intestsuite) calledconfig . Make aTool Init File in this
directory. Its name must start with the target_abbrev value, or be named
default.exp so call itconfig/unix.exp for our Unix based example. This is the
file that contains the target-dependent procedures. Fortunately, on Unix, most of
them do not have to do very much in order forruntest to run.

If the program being tested is not interactive, you can get away with this minimal
unix.exp to begin with:

Example 4-2. Simple Batch Program Tool Init File

proc foo_exit {} {}
proc foo_version {} {}

If the program being tested is interactive, however, you might as well define astart
routine and invoke it by using an init file like this:

Example 4-3. Simple Interactive Program Tool Init File

proc foo_exit {} {}
proc foo_version {} {}

proc foo_start {} {
global ${examplename}
spawn ${examplename}

48

Chapter 4. Extending DejaGnu

expect {
-re "" {}

}
}

Start the program running we want to test
foo_start

• Create a directory whose name begins with your tool’s name, to contain tests. For
example, if your tool’s name isgcc, then the directories all need to start with"gcc.".

• Create a sample test file. Its name must end with.exp . You can use
first-try.exp . To begin with, just write there a line of Tcl code to issue a
message.

Example 4-4. Testing A New Tool Config

send_user "Testing: one, two...\n"

• Back in thetestsuite (top level) directory, runconfigure. Typically you do this
while in the build directory. You may have to specify more of a path, if a suitable
configure is not available in your execution path.

• e now ready to triumphantly typemake checkor runtest. You should see something
like this:

Example 4-5. Example Test Case Run

Test Run By rhl on Fri Jan 29 16:25:44 EST 1993

=== example tests ===

Running ./example.0/first-try.exp ...

49

Chapter 4. Extending DejaGnu

Testing: one, two...

=== example Summary ===

There is no output in the summary, because so far the example does not call any of
the procedures that establish a test outcome.

• Write some real tests. For an interactive tool, you should probably write a real exit
routine in fairly short order. In any case, you should also write a real version routine
soon.

4.3. Adding A New Target
DejaGnu has some additional requirements for target support, beyond the
general-purpose provisions of configure. DejaGnu must actively communicate with the
target, rather than simply generating or managing code for the target architecture.
Therefore, each tool requires an initialization module for each target. For new targets,
you must supply a few Tcl procedures to adapt DejaGnu to the target. This permits
DejaGnu itself to remain target independent.

Usually the best way to write a new initialization module is to edit an existing
initialization module; some trial and error will be required. If necessary, you can use
the @samp{–debug} option to see what is really going on.

When you code an initialization module, be generous in printing information controlled
by theverbose procedure.

For cross targets, most of the work is in getting the communications right.
Communications code (for several situations involving IP networks or serial lines) is
available in a DejaGnu library file.

If you suspect a communication problem, try running the connection interactively from
Expect. (There are three ways of running Expect as an interactive interpreter. You can

50

Chapter 4. Extending DejaGnu

run Expect with no arguments, and control it completely interactively; or you can use
expect -itogether with other command-line options and arguments; or you can run the
commandinterpreter from any Expect procedure. Usereturn to get back to the
calling procedure (if any), orreturn -tcl to make the calling procedure itself return to
its caller; useexit or end-of-file to leave Expect altogether.) Run the program whose
name is recorded in $connectmode, with the arguments in $targetname, to establish a
connection. You should at least be able to get a prompt from any target that is
physically connected.

4.4. Adding A New Board
Adding a new board consists of creating a new board config file. Examples are in
dejagnu/baseboards . Usually to make a new board file, it’s easiest to copy an
existing one. It is also possible to have your file be based on abaseboardfile with only
one or two changes needed. Typically, this can be as simple as just changing the linker
script. Once the new baseboard file is done, add it to the boards_DATA list in the
dejagnu/baseboards/Makefile.am , and regenerate the Makefile.in using
automake. Then just rebuild and install DejaGnu. You can test it by:

There is a crude inheritance scheme going on with board files, so you can include one
board file into another, The two main procedures used to do this are
load_generic_config andload_base_board_description . The generic config
file contains other procedures used for a certain class of target. The board description
file is where the board specfic settings go. Commonly there are similar target
environments with just different processors.

Example 4-6. Testing a New Board Config File

make check RUNTESTFLAGS="-target_board= newboardfile ".

Here’s an example of a board config file. There are severalhelper proceduresused in
this example. A helper procedure is one that look for a tool of files in commonly

51

Chapter 4. Extending DejaGnu

installed locations. These are mostly used when testing in the build tree, because the
executables to be tested are in the same tree as the new dejagnu files. The helper
procedures are the ones in square braces[] , which is the Tcl execution characters.

Example 4-7. Example Board Config File

Load the generic configura-
tion for this board. This will define a basic

set of routines needed by the tool to communi-
cate with the board.

load_generic_config "sim"

basic-sim.exp is a basic description for the stan-
dard Cygnus simulator.

load_base_board_description "basic-sim"

The com-
piler used to build for this board. This has *nothing* to do

with what compiler is tested if we’re testing gcc.
set_board_info compiler "[find_gcc]"

We only support newlib on this target.
However, we include lib-

gloss so we can find the linker scripts.
set_board_info cflags "[newlib_include_flags] [libgloss_include_flags]"
set_board_info ldflags "[newlib_link_flags]"

No linker script for this board.
set_board_info ldscript "-Tsim.ld";

The simulator doesn’t return exit sta-
tuses and we need to indicate this.

set_board_info needs_status_wrapper 1

Can’t pass arguments to this target.
set_board_info noargs 1

52

Chapter 4. Extending DejaGnu

No signals.
set_board_info gdb,nosignals 1

And it can’t call functions.
set_board_info gdb,cannot_call_functions 1

4.5. Board Config File Values
These fields are all in the board_info These are all set by using theset_board_info

procedure. The parameters are the field name, followed by the value to set the field to.

Table 4-1. Common Board Info Fields

Field Sample Value Description

compiler "[find_gcc]" The path to the compiler to
use.

cflags "-mca" Compilation flags for the
compiler.

ldflags "[libgloss_link_flags]
[newlib_link_flags]"

Linking flags for the
compiler.

ldscript "-Wl,-Tidt.ld" The linker script to use
when cross compiling.

libs "-lgcc" Any additional libraries to
link in.

shell_prompt "cygmon>" The command prompt of
the remote shell.

hex_startaddr "0xa0020000" The Starting address as a
string.

53

Chapter 4. Extending DejaGnu

Field Sample Value Description

start_addr 0xa0008000 The starting address as a
value.

startaddr "a0020000"

exit_statuses_bad 1 Whether there is an
accurate exit status.

reboot_delay 10 The delay between power
off and power on.

unreliable 1 Whether communication
with the board is
unreliable.

sim [find_sim] The path to the simulator
to use.

objcopy $tempfil The path to the objcopy
program.

support_libs "${prefix_dir}/i386-coff/" Support libraries needed
for cross compiling.

addl_link_flags "-N" Additional link flags,
rarely used.

These fields are used by the GCC and GDB tests, and are mostly only useful to
somewhat trying to debug a new board file for one of these tools. Many of these are
used only by a few testcases, and their purpose is esoteric. These are listed with sample
values as a guide to better guessing if you need to change any of these.

Table 4-2. Board Info Fields For GCC & GDB

Field Sample Value Description

strip $tempfile Strip the executable of
symbols.

54

Chapter 4. Extending DejaGnu

Field Sample Value Description

gdb_load_offset "0x40050000"

gdb_protocol "remote" The GDB debugging
protocol to use.

gdb_sect_offset "0x41000000";

gdb_stub_ldscript "-Wl,-Teva-stub.ld" The linker script to use
with a GDB stub.

gdb_init_command "set mipsfpu none"

gdb,cannot_call_functions 1 Whether GDB can call
functions on the target,

gdb,noargs 1 Whether the target can
take command line
arguments.

gdb,nosignals 1 Whether there are signals
on the target.

gdb,short_int 1

gdb,start_symbol "_start"; The starting symbol in the
executable.

gdb,target_sim_options "-sparclite" Special options to pass to
the simulator.

gdb,timeout 540 Timeout value to use for
remote communication.

gdb_init_command "print/x \$fsr = 0x0"

gdb_load_offset "0x12020000"

gdb_opts "–command gdbinit"

gdb_prompt "\\(gdb960\\)" The prompt GDB is using.

gdb_run_command "jump start"

gdb_stub_offset "0x12010000"

55

Chapter 4. Extending DejaGnu

Field Sample Value Description

use_gdb_stub 1 Whether to use a GDB
stub.

use_vma_offset 1

wrap_m68k_aout 1

gcc,no_label_values 1

gcc,no_trampolines 1

gcc,no_varargs 1

gcc,stack_size 16384 Stack size to use with some
GCC testcases.

ieee_multilib_flags "-mieee";

is_simulator 1

needs_status_wrapper 1

no_double 1

no_long_long 1

noargs 1

nullstone,lib "mips-clock.c"

nullstone,ticks_per_sec 3782018

sys_speed_value 200

target_install {sh-hms}

4.6. Writing A Test Case
The easiest way to prepare a new test case is to base it on an existing one for a similar
situation. There are two major categories of tests: batch or interactive. Batch oriented
tests are usually easier to write.

The GCC tests are a good example of batch oriented tests. All GCC tests consist

56

Chapter 4. Extending DejaGnu

primarily of a call to a single common procedure, Since all the tests either have no
output, or only have a few warning messages when successfully compiled. Any
non-warning output is a test failure. All the C code needed is kept in the test directory.
The test driver, written in Tcl, need only get a listing of all the C files in the directory,
and compile them all using a generic procedure. This procedure and a few others
supporting for these tests are kept in the library modulelib/c-torture.exp in the
GCC test suite. Most tests of this kind use very few expect features, and are coded
almost purely in Tcl.

Writing the complete suite of C tests, then, consisted of these steps:

• Copying all the C code into the test directory. These tests were based on the
C-torture test created by Torbjorn Granlund (on behalf of the Free Software
Foundation) for GCC development.

• Writing (and debugging) the generic Tcl procedures for compilation.

• Writing the simple test driver: its main task is to search the directory (using the Tcl
procedureglob for filename expansion with wildcards) and call a Tcl procedure with
each filename. It also checks for a few errors from the testing procedure.

Testing interactive programs is intrinsically more complex. Tests for most interactive
programs require some trial and error before they are complete.

However, some interactive programs can be tested in a simple fashion reminiscent of
batch tests. For example, prior to the creation of DejaGnu, the GDB distribution
already included a wide-ranging testing procedure. This procedure was very robust, and
had already undergone much more debugging and error checking than many recent
DejaGnu test cases. Accordingly, the best approach was simply to encapsulate the
existing GDB tests, for reporting purposes. Thereafter, new GDB tests built up a family
of Tcl procedures specialized for GDB testing.

4.7. Debugging A Test Case
These are the kinds of debugging information available from DejaGnu:

57

Chapter 4. Extending DejaGnu

• Output controlled by test scripts themselves, explicitly allowed for by the test author.
This kind of debugging output appears in the detailed output recorded in the
DejaGnu log file. To do the same for new tests, use theverboseprocedure (which in
turn uses the variable also calledverbose) to control how much output to generate.
This will make it easier for other people running the test to debug it if necessary.
Whenever possible, if$verboseis 0, there should be no output other than the output
from pass, fail, error, andwarning. Then, to whatever extent is appropriate for the
particular test, allow successively higher values of$verboseto generate more
information. Be kind to other programmers who use your tests: provide for a lot of
debugging information.

• Output from the internal debugging functions of Tcl and Expect. There is a
command line options for each; both forms of debugging output are recorded in the
file dbg.log in the current directory.

Use-debug for information from the expect level; it generates displays of the
expect attempts to match the tool output with the patterns specified. This output can
be very helpful while developing test scripts, since it shows precisely the characters
received. Iterating between the latest attempt at a new test script and the
correspondingdbg.log can allow you to create the final patterns by “cut and paste”.
This is sometimes the best way to write a test case.

• Use-strace to see more detail at the Tcl level; this shows how Tcl procedure
definitions expand, as they execute. The associated number controls the depth of
definitions expanded.

• Finally, if the value ofverboseis 3 or greater,DejaGnu turns on the expect command
log_user. This command prints all expect actions to the expect standard output, to
the detailed log file, and (if-debug is on) todbg.log .

4.8. Adding A Test Case To A Test Suite.
There are two slightly different ways to add a test case. One is to add the test case to an
existing directory. The other is to create a new directory to hold your test. The existing

58

Chapter 4. Extending DejaGnu

test directories represent several styles of testing, all of which are slightly different;
examine the directories for the tool of interest to see which (if any) is most suitable.

Adding a GCC test can be very simple: just add the C code to any directory beginning
with gcc . and it runs on the next

runtest -tool
gcc

.

To add a test to GDB, first add any source code you will need to the test directory. Then
you can either create a new expect file, or add your test to an existing one (any file with
a .expsuffix). Creating a new .exp file is probably a better idea if the test is significantly
different from existing tests. Adding it as a separate file also makes upgrading easier. If
the C code has to be already compiled before the test will run, then you’ll have to add it
to theMakefile.in file for that test directory, then runconfigureandmake.

Adding a test by creating a new directory is very similar:

• Create the new directory. All subdirectory names begin with the name of the tool to
test; e.g. G++ tests might be in a directory calledg++.other . There can be multiple
test directories that start with the same tool name (such asg++).

• Add the new directory name to the configdirs definition in theconfigure.in file
for the test suite directory. This way whenmakeandconfigurenext run, they
include the new directory.

• Add the new test case to the directory, as above.

• To add support in the new directory for configure and make, you must also create a
Makefile.in and aconfigure.in .

4.9. Hints On Writing A Test Case
It is safest to write patterns that match all the output generated by the tested program;

59

Chapter 4. Extending DejaGnu

this is called closure. If a pattern does not match the entire output, any output that
remains will be examined by the nextexpectcommand. In this situation, the precise
boundary that determines whichexpectcommand sees what is very sensitive to timing
between the Expect task and the task running the tested tool. As a result, the test may
sometimes appear to work, but is likely to have unpredictable results. (This problem is
particularly likely for interactive tools, but can also affect batch tools—especially for
tests that take a long time to finish.) The best way to ensure closure is to use the-re

option for theexpectcommand to write the pattern as a full regular expressions; then
you can match the end of output using a$. It is also a good idea to write patterns that
match all available output by using.*\ after the text of interest; this will also match any
intervening blank lines. Sometimes an alternative is to match end of line using\r or \n,
but this is usually too dependent on terminal settings.

Always escape punctuation, such as(or ", in your patterns; for example, write\(. If you
forget to escape punctuation, you will usually see an error message like

extra
characters after close-quote.

If you have trouble understanding why a pattern does not match the program output, try
using the-debug option toruntest, and examine the debug log carefully.

Be careful not to neglect output generated by setup rather than by the interesting parts
of a test case. For example, while testing GDB, I issue a sendset height 0\ncommand.
The purpose is simply to make sure GDB never calls a paging program. Theset height
command in GDB does not generate any output; but running any command makes
GDB issue a new(gdb) prompt. If there were noexpectcommand to match this
prompt, the output(gdb) begins the text seen by the nextexpectcommand—which
might make that pattern fail to match.

To preserve basic sanity, I also recommended that no test ever pass if there was any
kind of problem in the test case. To take an extreme case, tests that pass even when the
tool will not spawn are misleading. Ideally, a test in this sort of situation should not fail
either. Instead, print an error message by calling one of the DejaGnu procedureserror
or warning.

60

Chapter 4. Extending DejaGnu

4.10. Special variables used by test cases.
There are special variables used by test cases. These contain other information from
DejaGnu. Your test cases can use these variables, with conventional meanings (as well
as the variables saved insite.exp . You can use the value of these variables, but they
should never be changed.

$prms_id

The tracking system (e.g. GNATS) number identifying a corresponding bugreport.
(0} if you do not specify it in the test script.)

$item bug_id

An optional bug id; may reflect a bug identification from another organization. (0
if you do not specify it.)

$subdir

The subdirectory for the current test case.

$expect_out(buffer)

The output from the last command. This is an internal variable set by Expect.
More information can be found in the Expect manual.

$exec_output

This is the output from a${tool}_load command. This only applies to tools
like GCC and GAS which produce an object file that must in turn be executed to
complete a test.

$comp_output

This is the output from a${tool}_start command. This is conventionally used
for batch oriented programs, like GCC and GAS, that may produce interesting
output (warnings, errors) without further interaction.

61

Chapter 5. Unit Testing

5.1. What Is Unit Testing ?
Most regression testing as done by DejaGnu is system testing. This is the complete
application is tested all at once. Unit testing is for testing single files, or small libraries.
In this case, each file is linked with a test case in C or C++, and each function or class
and method is tested in series, with the test case having to check private data or global
variables to see if the function or method worked.

This works particularly well for testing APIs and at level where it is easier to debug
them, than by needing to trace through the entire appication. Also if there is a
specification for the API to be tested, the testcase can also function as a compliance test.

5.2. The dejagnu.h Header File
DejaGnu uses a single header file to assist in unit testing. As this file also produces it’s
one test state output, it can be run standalone, which is very useful for testing on
embedded systems. This header file has a C and C++ API for the test states, with
simple totals, and standardized output. Because the output has been standardized,
DejaGnu can be made to work with this test case, without writing almost any Tcl. The
library module, dejagnu.exp, will look for the output messages, and then merge them
into DejaGnu’s.

62

Chapter 6. Reference

6.1. Obtaining DejaGnu
You can obtain DejaGnu from the DejaGnu web site at the Free Software Foundation
(http://www.gnu.org), which is at www.gnu.org/software/dejagnu/
(http://www.gnu.org/software/dejagnu/)

6.2. Installation
Once you have the DejaGnu source unpacked and available, you must first configure
the software to specify where it is to run (and the associated defaults); then you can
proceed to installing it.

6.2.1. Configuring DejaGnu
It is usually best to configure in a directory separate from the source tree, specifying
where to find the source with the optional–srcdir option toconfigure. DejaGnu uses the
GNU autoconfto configure itself. For more info on using autoconf, read the GNU
autoconf manual. To configure, execute theconfigure program, no other options are
required. For an example, to configure in a seperate tree for objects, execute the
configure script from the source tree like this:

../dejagnu-1.4.1/configure

DejaGnu doesn’t care at config time if it’s for testing a native system or a cross system.
That is determined at runtime by using the config files.

You may also want to use theconfigureoption–prefixto specify where you want
DejaGnu and its supporting code installed. By default, installation is in subdirectories

63

Chapter 6. Reference

of /usr/local , but you can select any alternate directory altdir by including
-prefix {altdir}} on the configurecommand line. (This value is captured in the
Makefile variablesprefixandexecprefix}.)

Save for a small number of example tests, the DejaGnu distribution itself does not
include any test suites; these are available separately. Test suites for the GNU
development tools are included in those releases. After configuring the top-level
DejaGnu directory, unpack and configure the test directories for the tools you want to
test; then, in each test directory, runmake checkto build auxiliary programs required by
some of the tests, and run the test suites.

6.2.2. Installing DejaGnu
To install DejaGnu in your filesystem (either in/usr/local , or as specified by your
–prefixoption toconfigure), execute.

eg$ make install

make installdoes thes things for DejaGnu:

• Look in the path specified for executables $exec_prefix) for directories calledlib

andbin . If these directories do not exist,make installcreates them.

• Create another directory in theshare directory, calleddejagnu , and copy all the
library files into it.

• Create a directory in thedejagnu/share directory, calledconfig , and copy all the
configuration files into it.

• Copy theruntestshell script into$exec_prefix/bin .

• Copyruntest.exp into $exec_prefix/lib/dejagnu . This is the main Tcl code
implementing DejaGnu.

64

Chapter 6. Reference

6.3. Builtin Procedures
DejaGnu provides these Tcl procedures.

6.3.1. Core Internal Procedures

6.3.1.1. Mail_file Procedure

mail_file (file to subject);

6.3.1.2. Open_logs Procedure

open_logs ();

6.3.1.3. Close_logs Procedure

close_logs ();

6.3.1.4. Isbuild Procedure

Tests for a particular build host environment. If the currently configured host matches
the argument string, the result is1; otherwise the result is0. hostmust be a full
three-part configure host name; in particular, you may not use the shorter nicknames
supported by configure (but you can use wildcard characters, using shell syntax, to

65

Chapter 6. Reference

specify sets of names). If it is passed a NULL string, then it returns the name of the
build canonical configuration.

isbuild (pattern);

pattern

6.3.1.5. Is_remote Procedure

is_remote (board);

6.3.1.6. is3way Procedure

Tests for a canadian cross. This is when the tests will be run on a remotly hosted cross
compiler. If it is a canadian cross, then the result is1; otherwise the result is0.

is3way ();

6.3.1.7. Ishost Procedure

Tests for a particular host environment. If the currently configured host matches the
argument string, the result is1; otherwise the result is0. hostmust be a full three-part
configure host name; in particular, you may not use the shorter nicknames supported by
configure (but you can use wildcard characters, using shell syntax, to specify sets of
names).

66

Chapter 6. Reference

ishost (pattern);

6.3.1.8. Istarget Procedure

Tests for a particular target environment. If the currently configured target matches the
argument string, the result is1 ; otherwise the result is0. target must be a full three-part
configure target name; in particular, you may not use the shorter nicknames supported
by configure (but you can use wildcard characters, using shell syntax, to specify sets of
names). If it is passed aNULL string, then it returns the name of the build canonical
configuration.

istarget (args);

6.3.1.9. Isnative Procedure

Tests whether the current configuration has the same host and target. When it runs in a
native configuration this procedure returns a1; otherwise it returns a0.

isnative ();

6.3.1.10. Unknown Procedure

unknown (args);

67

Chapter 6. Reference

args

6.3.1.11. Clone_output Procedure

clone_output (message);

message

6.3.1.12. Reset_vars Procedure

reset_vars ();

6.3.1.13. Log_and_exit Procedure

log_and_exit ();

6.3.1.14. Log_summary Procedure

log_summary (args);

68

Chapter 6. Reference

args

6.3.1.15. Cleanup Procedure

cleanup ();

6.3.1.16. Setup_xfail Procedure

Declares that the test is expected to fail on a particular set of configurations. The config
argument must be a list of full three-part configure target name; in particular, you may
not use the shorter nicknames supported by configure (but you can use the common
shell wildcard characters to specify sets of names). Thebugidargument is optional, and
used only in the logging file output; use it as a link to a bug-tracking system such as
GNATS.

Once you usesetup_xfail , thefail andpass procedures produce the messages
XFAIL andXPASSrespectively, allowing you to distinguish expected failures (and
unexpected success!) from other test outcomes.

Warning
Warning you must clear the expected failure after using
setup_xfail in a test case. Any call to pass or fail l clears the
expected failure implicitly; if the test has some other outcome, e.g.
an error, you can call clear_xfail to clear the expected failure
explicitly. Otherwise, the expected-failure declaration applies to
whatever test runs next, leading to surprising results.

setup_xfail (config bugid);

69

Chapter 6. Reference

config

The config triplet to trigger whether this is an unexpected or expect failure.

bugid

The optional bugid, used to tie it this test case to a bug tracking system.

6.3.1.17. Record_test Procedure

record_test (type message args);

type

message

args

6.3.1.18. Pass Procedure

Declares a test to have passed.pass writes in the log files a message beginning with
PASS(or XPASS, if failure was expected), appending the argumentstring .

pass (string);

string

The string to use for this PASS message.

70

Chapter 6. Reference

6.3.1.19. Fail Procedure

Declares a test to have failed.fail writes in the log files a message beginning with
FAIL (or XFAIL, if failure was expected), appending the argumentstring .

fail (string);

string

The string to use for this FAIL message.

6.3.1.20. Xpass Procedure

Declares a test to have unexpectably passed, when it was expected to be a failure.
xpass writes in the log files a message beginning withXPASS(or XFAIL, if failure was
expected), appending the argumentstring .

xpass (string);

string

The string to use for this output state.

6.3.1.21. Xfail Procedure

Declares a test to have expectably failed.xfail writes in the log files a message
beginning withXFAIL (or PASS, if success was expected), appending the argument
string .

xpass (string);

71

Chapter 6. Reference

string

The string to use for this output state.

6.3.1.22. Set_warning_threshold Procedure

Sets the value of warning_threshold. A value of0 disables it: calls towarning will not
turn aPASSor FAIL into anUNRESOLVED.

set_warning_threshold (threshold);

threshold

This is the value of the new warning threshold.

6.3.1.23. Get_warning_threshold Procedure

Returns the current value of {warning_threshold. The default value is 3. This value
controls how manywarning procedures can be called before becoming
UNRESOLVED.

get_warning_threshold ();

6.3.1.24. Warning Procedure

Declares detection of a minor error in the test case itself.warning writes in the log
files a message beginning withWARNING, appending the argumentstring . Use
warning rather thanperror for cases (such as communication failure to be followed
by a retry) where the test case can recover from the error. If the optionalnumber is
supplied, then this is used to set the internal count of warnings to that value.

72

Chapter 6. Reference

As a side effect, warning_threshold or more calls to warning in a single test case also
changes the effect of the nextpass or fail command: the test outcome becomes
UNRESOLVEDsince an automaticPASSor FAIL may not be trustworthy after many
warnings. If the optional numeric value is0, then there are no further side effects to
calling this function, and the following test outcome doesn’t becomeUNRESOLVED.
This can be used for errors with no known side effects.

warning (string number);

string

number

The optional number to set the error counter. Thius is only used to fake out the
counter when using thexfail procedure to control when it flips the output over to
UNRESOLVEDstate.

6.3.1.25. Perror Procedure

Declares a severe error in the testing framework itself.perror writes in the log files a
message beginning withERROR, appending the argumentstring .

As a side effect, perror also changes the effect of the nextpass or fail command: the
test outcome becomesUNRESOLVED, since an automaticPASSor FAIL cannot be
trusted after a severe error in the test framework. If the optional numeric value is0, then
there are no further side effects to calling this function, and the following test outcome
doesn’t becomeUNRESOLVED. This can be used for errors with no known side effects.

perror (string number);

73

Chapter 6. Reference

string

number

The optional number to set the error counter. Thius is only used to fake out the
counter when using thexfail procedure to control when it flips the output over to
UNRESOLVEDstate.

6.3.1.26. Note Procedure

Appends an informational message to the log file.note writes in the log files a
message beginning withNOTE, appending the argumentstring . Usenote

sparingly. Theverbose should be used for most such messages, but in cases where a
message is needed in the log file regardless of the verbosity level usenote .

note (string);

string

The string to use for this note.

6.3.1.27. Untested Procedure

Declares a test was not run.untested writes in the log file a message beginning with
UNTESTED, appending the argumentstring. For example, you might use this in a
dummy test whose only role is to record that a test does not yet exist for some feature.

untested (string);

74

Chapter 6. Reference

string

The string to use for this output state.

6.3.1.28. Unresolved Procedure

Declares a test to have an unresolved outcome.unresolved writes in the log file a
message beginning withUNRESOLVED, appending the argumentstring. This usually
means the test did not execute as expected, and a human being must go over results to
determine if it passed or failed (and to improve the test case).

unresolved (string);

string

The string to use for this output state.

6.3.1.29. Unsupported Procedure

Declares that a test case depends on some facility that does not exist in the testing
environment.unsupported writes in the log file a message beginning with
UNSUPPORTED, appending the argument string.

unsupported (string);

string

The string to use for this output state.

6.3.1.30. Init_testcounts Procedure

75

Chapter 6. Reference

init_testcounts ();

6.3.1.31. Incr_count Procedure

incr_count (name args);

name

args

6.3.1.32. transform Procedure

Generates a string for the name of a tool as it was configured and installed, given its
native name (as the argumenttoolname). This makes the assumption that all tools are
installed using the same naming conventions: For example, for a cross compiler
supporting them68k-vxworksconfiguration, the result of transformgcc is
m68k-vxworks-gcc.

transform (toolname);

toolname

The name of the cross-development program to transform.

6.3.1.33. Check_conditional_xfail Procedure

This procedure adds a condition xfail, based on compiler options used to create a test

76

Chapter 6. Reference

case executable. If an include options is found in the compiler flags, and it’s the right
architecture, it’ll trigger anXFAIL. Otherwise it’ll produce an ordinaryFAIL. You can
also specify flags to exclude. This makes a result be aFAIL, even if the included
options are found. To set the conditional, set the variable
compiler_conditional_xfail_data to the fields

"[message string] [targets list] [includes
list] [excludes list]"

(descriptions below). This is the checked at pass/fail decision time, so there is no need
to call the procedure yourself, unless you wish to know if it gets triggered. After a
pass/fail, the variable is reset, so it doesn’t effect other tests. It returns1 if the
conditional is true, or0 if the conditional is false.

check_conditional_xfail (message targets includes excludes);

message

This is the message to print with the normal test result.

targets

This is a string with the list targets to activate this conditional on.

includes

This is a list of sets of options to search for in the compiler options to activate this
conditional. If any set of the options matches, then this conditional is true.

excludes

This is a list of sets of options to search for in the compiler options to activate this
conditional. If any set of the options matches, (regardless of whether any of the
include sets match) then this conditional is de-activated.

77

Chapter 6. Reference

Example 6-1. Specifying the conditional xfail data

set compiler_conditional_xfail_data { \
"I sure wish I knew why this was hosed" \

"sparc*-sun*-* *-pc-*-*" \
{"-Wall -v" "-O3"} \
{"-O1" "-Map"} \

}

What this does is it matches only for these two targets if "-Wall -v" or "-O3" is set, but
neither "-O1" or "-Map" is set. For a set to match, the options specified are searched for
independantly of each other, so a "-Wall -v" matches either "-Wall -v" or "-v -Wall". A
space seperates the options in the string. Glob-style regular expressions are also
permitted.

6.3.1.34. Clear_xfail Procedure

Cancel an expected failure (previously declared withsetup_xfail) for a particular set of
configurations. Theconfig argument is a list of configuration target names. It is only
necessary to callclear_xfail if a test case ends without calling eitherpassor fail , after
callingsetup_xfail.

clear_xfail (config);

config

The configuration triplets to clear.

6.3.1.35. Verbose Procedure

Test cases can use this function to issue helpful messages depending on the number of
-verbose options on the runtest command line. It prints string if the value of the

78

Chapter 6. Reference

variable verbose is higher than or equal to the optional number. The default value for
number is1. Use the optional-log argument to cause string to always be added to the
log file, even if it won’t be printed. Use the optional-n argument to print string without
a trailing newline. Use the optional- argument if string begins with "-".

verbose (-log -n -r string number);

-log

-n

-

string

number

6.3.1.36. Load_lib Procedure

Loads a DejaGnu library file by searching a fixed path built into DejaGnu. If DejaGnu
has been installed, it looks in a path starting with the installed library directory. If you
are running DejaGnu directly from a source directory, without first runningmake
install, this path defaults to the current directory. In either case, it then looks in the
current directory for a directory calledlib . If there are duplicate definitions, the last
one loaded takes precedence over the earlier ones.

79

Chapter 6. Reference

load_lib (filespec);

filespec

The name of the DejaGnu library file to load.

6.3.2. Procedures For Remote Communication
lib/remote.exp defines these functions, for establishing and managing
communications. Each of these procedures tries to establish the connection up to three
times before returning. Warnings (if retries will continue) or errors (if the attempt is
abandoned) report on communication failures. The result for any of these procedures is
either-1, when the connection cannot be established, or the spawn ID returned by the
Expect commandspawn.

It use the value of the connect field in the target_info array (was connectmode as the
type of connection to make. Current supported connection types are tip, kermit, telnet,
rsh, rlogin, and netdata. If the-reboot option was used on the runtest command line,
then the target is rebooted before the connection is made.

6.3.2.1. Call_remote Procedure

call_remote (type proc dest args);

proc

dest

80

Chapter 6. Reference

args

6.3.2.2. Check_for_board_status Procedure

check_for_board_status (variable);

variable

6.3.2.3. File_on_build Procedure

file_on_build (op file args);

op

file

args

6.3.2.4. File_on_host Procedure

81

Chapter 6. Reference

file_on_host (op file args);

op

file

args

6.3.2.5. Local_exec Procedure

local_exec (commandline inp outp timeout);

inp

outp

timeout

6.3.2.6. Remote_binary Procedure

remote_binary (host);

82

Chapter 6. Reference

host

6.3.2.7. Remote_close Procedure

remote_close (shellid);

shellid

This is the value returned by a call toremote_open . This closes the connection to
the target so resources can be used by others. This parameter can be left off if the
fileid field in the target_info array is set.

6.3.2.8. Remote_download Procedure

remote_download (dest file args);

dest

file

args

83

Chapter 6. Reference

6.3.2.9. Remote_exec Procedure

remote_exec (hostname program args);

hostname

program

args

6.3.2.10. Remote_expect Procedure

remote_expect (board timeout args);

board

timeout

args

6.3.2.11. Remote_file Procedure

84

Chapter 6. Reference

remote_file (dest args);

dest

args

6.3.2.12. Remote_ld Procedure

remote_ld (dest prog);

dest

prog

6.3.2.13. Remote_load Procedure

remote_load (dest prog args);

dest

85

Chapter 6. Reference

prog

args

6.3.2.14. Remote_open Procedure

remote_open (type);

type

This is passedhost or target . Host or target refers to whether it is a connection
to a remote target, or a remote host. This opens the connection to the desired target
or host using the default values in the configuration system. It returns that
spawn_id of the process that manages the connection. This value can be used in
Expect orexp_sendstatements, or passed to other procedures that need the
connection process’s id. This also sets the fileid field in the target_info array.

6.3.2.15. Remote_pop_conn Procedure

remote_pop_conn (host);

host

86

Chapter 6. Reference

6.3.2.16. Remote_push_conn Procedure

remote_push_conn (host);

host

6.3.2.17. Remote_raw_binary Procedure

remote_raw_binary (host);

host

6.3.2.18. Remote_raw_close Procedure

remote_raw_close (host);

host

6.3.2.19. Remote_raw_file Procedure

remote_raw_file (dest args);

87

Chapter 6. Reference

dest

args

6.3.2.20. remote_raw_ld Procedure

remote_raw_ld (dest prog);

dest

prog

6.3.2.21. Remote_raw_load Procedure

remote_raw_load (dest prog args);

dest

prog

88

Chapter 6. Reference

args

6.3.2.22. Remote_raw_open Procedure

remote_raw_open (args);

args

6.3.2.23. Remote_raw_send Procedure

remote_raw_send (dest string);

dest

string

6.3.2.24. Remote_raw_spawn Procedure

remote_raw_spawn (dest commandline);

89

Chapter 6. Reference

dest

commandline

6.3.2.25. Remote_raw_transmit Procedure

remote_raw_transmit (dest file);

dest

file

6.3.2.26. Remote_raw_wait Procedure

remote_raw_wait (dest timeout);

dest

timeout

90

Chapter 6. Reference

6.3.2.27. Remote_reboot Procedure

remote_reboot (host);

host

6.3.2.28. Remote_send Procedure

remote_send (dest string);

dest

string

6.3.2.29. Remote_spawn Procedure

remote_spawn (dest commandline args);

dest

commandline

91

Chapter 6. Reference

args

6.3.2.30. Remote_swap_conn Procedure

remote_swap_conn (host);

6.3.2.31. Remote_transmit Procedure

remote_transmit (dest file);

dest

file

6.3.2.32. Remote_upload Procedure

remote_upload (dest srcfile arg);

92

Chapter 6. Reference

dest

srcfile

arg

6.3.2.33. Remote_wait Procedure

remote_wait (dest timeout);

dest

timeout

6.3.2.34. Standard_close Procedure

standard_close (host);

host

93

Chapter 6. Reference

6.3.2.35. Standard_download Procedure

standard_download (dest file destfile);

dest

file

destfile

6.3.2.36. Standard_exec Procedure

standard_exec (hostname args);

hostname

args

6.3.2.37. Standard_file Procedure

standard_file (dest , op , args);

94

Chapter 6. Reference

6.3.2.38. Standard_load Procedure

standard_load (dest prog args);

dest

prog

args

6.3.2.39. Standard_reboot Procedure

standard_reboot (host);

host

6.3.2.40. Standard_send Procedure

standard_send (dest string);

95

Chapter 6. Reference

dest

string

6.3.2.41. Standard_spawn Procedure

standard_spawn (dest commandline);

dest

commndline

6.3.2.42. Standard_transmit Procedure

standard_transmit (dest file);

dest

file

96

Chapter 6. Reference

6.3.2.43. Standard_upload Procedure

standard_upload (dest srcfile destfile);

dest

srcfile

destfile

6.3.2.44. Standard_wait Procedure

standard_wait (dest timeout);

dest

timeout

6.3.2.45. Unix_clean_filename Procedure

unix_clean_filename (dest file);

97

Chapter 6. Reference

dest

file

6.3.3. Procedures For Using Utilities to Connect
telnet, rsh, tip, kermit

6.3.3.1. telnet Procedure

telnet (hostname port);

rlogin (hostname);

6.3.3.2. rsh Procedure

rsh (hostname);

hostname

This refers to the IP address or name (for example, an entry in/etc/hosts) for
this target. The procedure names reflect the Unix utility used to establish a
connection. The optionalport is used to specify the IP port number. The value of
thenetport field in the target_info array is used. (was $netport) This value has

98

Chapter 6. Reference

two parts, the hostname and the port number, seperated by a:. If host or target is
used in the hostname field, than the config array is used for all information.

6.3.3.3. Tip Procedure

tip (port);

port

Connect using the Unix utilitytip . Port must be a name from the tip
configuration file/etc/remote . Often, this is called hardwire, or something like
ttya. This file holds all the configuration data for the serial port. The value of the
serial field in the target_info array is used. (was $serialport) Ifhost or target is
used in theport field, than the config array is used for all information. the config
array is used for all information.

6.3.3.4. Kermit Procedure

kermit (port bps);

port

Connect using the programkermit . Port is the device name, e.g./dev/ttyb .

bps

bps is the line speed to use (in its per second) for the connection. The value of the
serial field in the target_info array is used. (was $serialport) Ifhost or target is
used in theport field, than the config array is used for all information. the config
array is used for all information.

99

Chapter 6. Reference

6.3.3.5. kermit_open Procedure

kermit_open (dest args);

dest

args

6.3.3.6. Kermit_command Procedure

kermit_command (dest args);

dest

args

6.3.3.7. Kermit_send Procedure

kermit_send (dest string args);

dest

100

Chapter 6. Reference

string

args

6.3.3.8. Kermit_transmit Procedure

kermit_transmit (dest file args);

dest

file

args

6.3.3.9. Telnet_open Procedure

telnet_open (hostname args);

hostname

101

Chapter 6. Reference

args

6.3.3.10. Telnet_binary Procedure

telnet_binary (hostname);

hostname

6.3.3.11. Telnet_transmit Procedure

telnet_transmit (dest file args);

dest

file

args

6.3.3.12. Tip_open Procedure

102

Chapter 6. Reference

tip_open (hostname);

hostname

6.3.3.13. Rlogin_open Procedure

rlogin_open (arg);

arg

6.3.3.14. Rlogin_spawn Procedure

rlogin_spawn (dest cmdline);

dest

cmdline

6.3.3.15. Rsh_open Procedure

rsh_open (hostname);

103

Chapter 6. Reference

hostname

6.3.3.16. Rsh_download Procedure

rsh_download (desthost srcfile destfile);

desthost

srcfile

destfile

6.3.3.17. Rsh_upload Procedure

rsh_upload (desthost srcfile destfile);

desthost

srcfile

104

Chapter 6. Reference

destfile

6.3.3.18. Rsh_exec Procedure

rsh_exec (boardname cmd args);

boardname

cmd

args

6.3.3.19. Ftp_open Procedure

ftp_open (host);

host

6.3.3.20. Ftp_upload Procedure

105

Chapter 6. Reference

ftp_upload (host remotefile localfile);

host

remotefile

localfile

6.3.3.21. Ftp_download Procedure

ftp_download (host localfile remotefile);

host

localfile

remotefile

6.3.3.22. Ftp_close Procedure

ftp_close (host);

106

Chapter 6. Reference

host

6.3.3.23. Tip_download Procedure

tip_download (spawnid file);

spawnid

Downloadfile to the process spawnid (the value returned when the connection
was established), using the~put command under tip. Most often used for single
board computers that require downloading programs in ASCII S-records. Returns
1 if an error occurs,0 otherwise.

file

This is the filename to downlaod.

6.3.4. Procedures For Target Boards

6.3.4.1. Default_link Procedure

default_link (board objects destfile flags);

board

107

Chapter 6. Reference

objects

destfile

flags

6.3.4.2. Default_target_assemble Procedure

default_target_assemble (source destfile flags);

source

destfile

flags

6.3.4.3. default_target_compile Procedure

default_target_compile (source destfile type options);

108

Chapter 6. Reference

source

destfile

type

options

6.3.4.4. Pop_config Procedure

pop_config (type);

type

6.3.4.5. Prune_warnings Procedure

prune_warnings (text);

text

109

Chapter 6. Reference

6.3.4.6. Push_build Procedure

push_build (name);

name

6.3.4.7. push_config Procedure

push_config (type name);

type

name

6.3.4.8. Reboot_target Procedure

reboot_target ();

6.3.4.9. Target_assemble Procedure

target_assemble (source destfile flags);

110

Chapter 6. Reference

source

destfile

flags

6.3.4.10. Target_compile Procedure

target_compile (source destfile type options);

source

destfile

type

options

111

Chapter 6. Reference

6.3.5. Target Database Procedures

6.3.5.1. Board_info Procedure

board_info (machine op args);

machine

op

args

6.3.5.2. Host_info Procedure

host_info (op args);

op

args

6.3.5.3. Set_board_info Procedure

112

Chapter 6. Reference

set_board_info (entry value);

entry

value

6.3.5.4. Set_currtarget_info Procedure

set_currtarget_info (entry value);

entry

value

6.3.5.5. Target_info Procedure

target_info (op args);

op

113

Chapter 6. Reference

args

6.3.5.6. Unset_board_info Procedure

unset_board_info (entry);

entry

6.3.5.7. Unset_currtarget_info Procedure

unset_currtarget_info (entry);

entry

6.3.5.8. Push_target Procedure

This makes the target namednamebe the current target connection. The value ofname
is an index into the target_info array and is set in the global config file.

push_target (name);

114

Chapter 6. Reference

name

The name of the target to make current connection.

6.3.5.9. Pop_target Procedure

This unsets the current target connection.

pop_target ();

6.3.5.10. List_targets Procedure

This lists all the supported targets for this architecture.

list_targets ();

6.3.5.11. Push_host Procedure

This makes the host namednamebe the current remote host connection. The value of
nameis an index into the target_info array and is set in the global config file.

push_host (name);

name

6.3.5.12. Pop_host Procedure

This unsets the current host connection.

115

Chapter 6. Reference

pop_host ();

6.3.5.13. Compile Procedure

This invokes the compiler as set by CC to compile the filefile . The default options
for many cross compilation targets areguessedby DejaGnu, and these options can be
added to by passing in more parameters as arguments tocompile. Optionally, this will
also use the value of thecflagsfield in the target config array. If the host is not the same
as the build machines, then then compiler is run on the remote host using
execute_anywhere.

compile (file);

file

6.3.5.14. Archive Procedure

This produces an archive file. Any parameters passed toarchive are used in addition to
the default flags. Optionally, this will also use the value of thearflagsfield in the target
config array. If the host is not the same as the build machines, then then archiver is run
on the remote host usingexecute_anywhere.

archive (file);

file

116

Chapter 6. Reference

6.3.5.15. Ranlib Procedure

This generates an index for the archive file for systems that aren’t POSIX yet. Any
parameters passed toranlib are used in for the flags.

ranlib (file);

file

6.3.5.16. Execute_anywhere Procedure

This executes thecmdlineon the proper host. This should be used as a replacement for
the Tcl commandexecas this version utilizes the target config info to execute this
command on the build machine or a remote host. All config information for the remote
host must be setup to have this command work. If this is a canadian cross, (where we
test a cross compiler that runs on a different host then where DejaGnu is running) then
a connection is made to the remote host and the command is executed there. It returns
either REMOTERROR (for an error) or the output produced when the command was
executed. This is used for running the tool to be tested, not a test case.

execute_anywhere (cmdline);

cmdline

6.3.6. Platform Dependant Procedures
Each combination of target and tool requires some target-dependent procedures. The

117

Chapter 6. Reference

names of these procedures have a common form: the tool name, followed by an
underbar_, and finally a suffix describing the procedure’s purpose. For example, a
procedure to extract the version from GDB is called gdb_version.

runtest itself calls only two of these procedures, ${tool}_exit and ${tool}_version;
these procedures use no arguments.

The other two procedures, ${tool}_start and ${tool}_load}, are only called by the test
suites themselves (or by testsuite-specific initialization code); they may take arguments
or not, depending on the conventions used within each test suite.

The usual convention for return codes from any of these procedures (although it is not
required byruntest) is to return0 if the procedure succeeded,1 if it failed, and-1 if
there was a communication error.

6.3.6.1. ${tool}_start Procedure

Starts a particular tool. For an interactive tool,${tool}_start starts and initializes
the tool, leaving the tool up and running for the test cases; an example isgdb_start ,
the start function for GDB. For a batch oriented tool,${tool}_start is optional; the
recommended convention is to let${tool}_start run the tool, leaving the output in a
variable calledcomp_output . Test scripts can then analyze$comp_output to
determine the test results. An example of this second kind of start function is
gcc_start , the start function for GCC.

DejaGnu itself does not call${tool}_start . The initialization module
${tool}_init.exp must call${tool}_start for interactive tools; for
batch-oriented tools, each individual test script calls${tool}_start (or makes other
arrangements to run the tool).

${tool}_start ();

6.3.6.2. ${tool}_load Procedure

Loads something into a tool. For an interactive tool, this conditions the tool for a

118

Chapter 6. Reference

particular test case; for example,gdb_load loads a new executable file into the
debugger. For batch oriented tools,${tool}_load may do nothing—though, for
example, the GCC support usesgcc_load to load and run a binary on the target
environment. Conventionally,${tool}_load leaves the output of any program it runs
in a variable called $exec_output. Writing${tool}_load can be the most complex
part of extending DejaGnu to a new tool or a new target, if it requires much
communication coding or file downloading. Test scripts call${tool}_load .

${tool}_load ();

6.3.6.3. ${tool}_exit Procedure

Cleans up (if necessary) before DejaGnu exits. For interactive tools, this usually ends
the interactive session. You can also use${tool}_exit to remove any temporary files
left over from the tests.runtest calls${tool}_exit .

${tool}_exit ();

6.3.6.4. ${tool}_version Procedure

Prints the version label and number for ${tool}. This is called by the DejaGnu
procedure that prints the final summary report. The output should consist of the full
path name used for the tested tool, and its version number.

${tool}_version ();

119

Chapter 6. Reference

6.3.7. Utility Procedures

6.3.7.1. Getdirs Procedure

Returns a list of all the directories in the single directory a single directory that match
an optional pattern.

getdirs (rootdir pattern);

args

pattern

If you do not specifypattern , Getdirs assumes a default pattern of* . You
may use the common shell wildcard characters in the pattern. If no directories
match the pattern, then a NULL string is returned

6.3.7.2. Find Procedure

Search for files whose names matchpattern(using shell wildcard characters for
filename expansion). Search subdirectories recursively, starting atrootdir. The result is
the list of files whose names match; if no files match, the result is empty. Filenames in
the result include all intervening subdirectory names. If no files match the pattern, then
a NULL string is returned.

find (rootdir pattern);

rootdir

The top level directory to search the search from.

120

Chapter 6. Reference

pattern

A csh "glob" style regular expression reprsenting the files to find.

6.3.7.3. Which Procedure

Searches the execution path for an executable filebinary, like the the BSDwhich
utility. This procedure uses the shell environment variablePATH. It returns0 if the
binary is not in the path, or if there is noPATHenvironment variable. Ifbinary is in the
path, it returns the full path tobinary .

which (file);

binary

The executable program or shell script to look for.

6.3.7.4. Grep Procedure

Search the file calledfilename (a fully specified path) for lines that contain a match
for regular expressionregexp. The result is a list of all the lines that match. If no lines
match, the result is an empty string. Specifyregexpusing the standard regular
expression style used by the Unix utility program grep.

Use the optional third argumentline to start lines in the result with the line number in
filename . (This argument is simply an option flag; type it just as shown-line .)

grep (filename regexp -line);

filename

The file to search.

121

Chapter 6. Reference

regexp

The Unix style regular expression (as used by thegrep Unix utility) to search for.

-line

Prefix the line number to each line where the regexp matches.

6.3.7.5. Prune Procedure

Remove elements of the Tcl listlist. Elements are fields delimited by spaces. The result
is a copy of list, without any elements that matchpattern. You can use the common
shell wildcard characters to specify the pattern.

prune (list pattern);

list

A Tcl list containing the original data. Commonly this is the output of a batch
executed command, like running a compiler.

pattern

The csh shell "glob" style pattern to search for.

6.3.7.6. Slay Procedure

This look in the process table fornameand send it a unix SIGINT, killing the process.
This will only work under NT if you have Cygwin or another Unix system for NT
installed.

slay (name);

122

Chapter 6. Reference

name

The name of the program to kill.

6.3.7.7. Absolute Procedure

This procedure takes the relativepath, and converts it to an absolute path.

absolute (path);

path

The path to convert.

6.3.7.8. Psource Procedure

This sources the filefilename, and traps all errors. It also ignores all extraneous output.
If there was an error it returns a1, otherwise it returns a0.

psource (file);

filename

The filename to Tcl script to source.

6.3.7.9. Runtest_file_p Procedure

Searchruntests for testcaseand return1 if found, 0 if not. runtestsis a list of two
elements. The first is the pathname of the testsuite expect script running. The second is
a copy of what was on the right side of the= if

foo.exp="..."

123

Chapter 6. Reference

" was specified, or an empty string if no such argument is present. This is used by tools
like compilers where each testcase is a file.

runtest_file_p (runtests testcase);

runtests

The pathname of the testsuite expect script running

testcase

The test case filename.

6.3.7.10. Diff Procedure

Compares the two files and returns a1 if they match, or a0 if they don’t. If verbose is
set, then it’ll print the differences to the screen.

diff (file_1 file_2);

file_1

The first file to compare.

file_2

The second file to compare.

6.3.7.11. Setenv Procedure

Sets the environment variablevar to the valueval.

setenv (var val);

124

Chapter 6. Reference

var

The environment variable to set.

val

The value to set the variable to.

6.3.7.12. unsetenv Procedure

Unsets the environment variablevar.

unsetenv (var);

var

The environment variable to unset.

6.3.7.13. Getenv Procedure

Returns the value ofvar in the environment if it exists, otherwise it returns NULL.

getenv (var);

var

The environment variable to get the value of.

6.3.7.14. Prune_system_crud Procedure

For systemsystem, delete text the host or target operating system might issue that will
interfere with pattern matching of program output intext. An example is the message
that is printed if a shared library is out of date.

125

Chapter 6. Reference

prune_system_crud (system test);

system

The system error messages to look for to screen out .

text

The Tcl variable containing the text.

6.3.8. Libgloss, A Free BSP
Libgloss is a freeBSP(Board Support Package) commonly used with GCC and G++ to
produce a fully linked executable image for an embedded systems.

6.3.8.1. Libgloss_link_flags Procedure

libgloss_link_flags (args);

args

6.3.8.2. Libgloss_include_flags Procedure

libgloss_include_flags (args);

126

Chapter 6. Reference

args

6.3.8.3. Newlib_link_flags Procedure

newlib_link_flags (args);

args

6.3.8.4. Newlib_include_flags Procedure

newlib_include_flags (args);

args

6.3.8.5. Libio_include_flags Procedure

libio_include_flags (args);

args

127

Chapter 6. Reference

6.3.8.6. Libio_link_flags Procedure

libio_link_flags (args);

args

6.3.8.7. G++_include_flags Procedure

g++_include_flags (args);

args

6.3.8.8. G++_link_flags Procedure

g++_link_flags (args);

args

6.3.8.9. Libstdc++_include_flags Procedure

libstdc++_include_flags (args);

128

Chapter 6. Reference

args

6.3.8.10. Libstdc++_link_flags Procedure

libstdc++_link_flags (args);

args

6.3.8.11. Get_multilibs Procedure

get_multilibs (args);

args

6.3.8.12. Find_binutils_prog Procedure

find_binutils_prog (name);

name

129

Chapter 6. Reference

6.3.8.13. Find_gcc Procedure

find_gcc ();

6.3.8.14. Find_gcj Procedure

find_gcj ();

6.3.8.15. Find_g++ Procedure

find_g++ ();

6.3.8.16. Find_g77 Procedure

find_g77 ();

6.3.8.17. Process_multilib_options Procedure

process_multilib_options (args);

args

130

Chapter 6. Reference

6.3.8.18. Add_multilib_option Procedure

add_multilib_option (args);

args

6.3.8.19. Find_gas Procedure

find_gas ();

6.3.8.20. Find_ld Procedure

find_ld ();

6.3.8.21. Build_wrapper Procedure

build_wrapper (gluefile);

gluefile

6.3.8.22. Winsup_include_flags Procedure

131

Chapter 6. Reference

winsup_include_flags (args);

args

6.3.8.23. Winsup_link_flags Procedure

winsup_link_flags (args);

args

6.3.9. Procedures for debugging your Tcl code.
lib/debugger.exp defines these utility procedures:

6.3.9.1. Dumpvars Procedure

This takes a csh style regular expression (glob rules) and prints the values of the global
variable names that match. It is abbreviated asdv.

dumpvars (vars);

vars

The variables to dump.

132

Chapter 6. Reference

6.3.9.2. Dumplocals Procedure

This takes a csh style regular expression (glob rules) and prints the values of the local
variable names that match. It is abbreviated asdl.

dumplocals (args);

args

6.3.9.3. Dumprocs Procedure

This takes a csh style regular expression (glob rules) and prints the body of all procs
that match. It is abbreviated asdp.

dumprocs (pattern);

pattern

The csh "glob" style pattern to look for.

6.3.9.4. Dumpwatch Procedure

This takes a csh style regular expression (glob rules) and prints all the watchpoints. It is
abbreviated asdw.

dumpwatch (pattern);

pattern

The csh "glob" style pattern to look for.

133

Chapter 6. Reference

6.3.9.5. Watcharray Procedure

watcharray (element type);

type

The csh "glob" style pattern to look for.

6.3.9.6. Watchvar Procedure

watchvar (var type);

6.3.9.7. Watchunset Procedure

This breaks program execution when the variable var is unset. It is abbreviated aswu.

watchunset (arg);

args

6.3.9.8. Watchwrite Procedure

This breaks program execution when the variable var is written. It is abbreviated asww.

134

Chapter 6. Reference

watchwrite (var);

var

The variable to watch.

6.3.9.9. Watchread Procedure

This breaks program execution when the variable var is read. It is abbreviated aswr.

watchread (var);

var

The variable to watch.

6.3.9.10. Watchdel Procedure

This deletes a the watchpoint from the watch list. It is abbreviated aswd.

watchdel (args);

args

6.3.9.11. Print Procedure

This prints the value of the variablevar . It is abbreviated asp.

print (var);

135

Chapter 6. Reference

var

6.3.9.12. Quit Procedure

This makes runtest exit. It is abbreviated asq.

quit ();

6.4. File Map
This is a map of the files in DejaGnu.

• runtest

• runtest.exp

• stub-loader.c

• testglue.c

• config

• baseboards

• lib/debugger.exp

• lib/dg.exp

• lib/framework.exp

• lib/ftp.exp

136

Chapter 6. Reference

• lib/kermit.exp

• lib/libgloss.exp

• lib/mondfe.exp

• lib/remote.exp

• lib/rlogin.exp

• lib/rsh.exp

• lib/standard.exp

• lib/target.exp

• lib/targetdb.exp

• lib/telnet.exp

• lib/tip.exp

• lib/util-defs.exp

• lib/utils.exp

• lib/xsh.exp

• lib/dejagnu.exp

137

Chapter 7. Unit Testing API

7.1. C Unit Testing API
All of the functions that take amsg parameter use a C char * that is the message to be
dislayed. There currently is no support for variable length arguments.

7.1.1. Pass Function
This prints a message for a successful test completion.

pass (msg);

7.1.2. Fail Function
This prints a message for an unsuccessful test completion.

fail (msg);

7.1.3. Untested Function
This prints a message for an test case that isn’t run for some technical reason.

untested (msg);

138

Chapter 7. Unit Testing API

7.1.4. Unresolved Function
This prints a message for an test case that is run, but there is no clear result. These
output states require a human to look over the results to determine what happened.

unresolved (msg);

7.1.5. Totals Function
This prints out the total numbers of all the test state outputs.

totals ();

7.2. C++ Unit Testing API
All of the methods that take amsg parameter use a C char * or STL string, that is the
message to be dislayed. There currently is no support for variable length arguments.

7.2.1. Pass Method
This prints a message for a successful test completion.

TestState::pass (msg);

7.2.2. Fail Method
This prints a message for an unsuccessful test completion.

139

Chapter 7. Unit Testing API

TestState::fail (msg);

7.2.3. Untested Method
This prints a message for an test case that isn’t run for some technical reason.

TestState::untested (msg);

7.2.4. Unresolved Method
This prints a message for an test case that is run, but there is no clear result. These
output states require a human to look over the results to determine what happened.

TestState::unresolved (msg);

7.2.5. Totals Method
This prints out the total numbers of all the test state outputs.

TestState::totals ();

140

