Go to the first, previous, next, last section, table of contents.


Target Architecture Definition

Ÿ°Ù ¾ÆÅ°ÅØÃÄ Á¤ÀÇ

GDB's target architecture defines what sort of machine-language programs GDB can work with, and how it works with them.

GDB Ÿ°Ù ¾ÆÅ°ÅØÃÄ´Â GDB°¡ °°ÀÌ ÀÛµ¿ÇÒ¼ö ÀÖ´Â ¸Ó½Å-¾ð¾î ÇÁ·Î±×·¥ÀÇ Á¾·ù¿Í ÀÛµ¿ÇÏ´Â ¹æ¹ý¿¡ ´ëÇÑ Á¤ÀÇÀÌ´Ù.

At present, the target architecture definition consists of a number of C macros.

ÇöÀç, Ÿ°Ù ¾ÆÅ°ÅØÃÄ Á¤ÀÇ´Â C ¸ÅÅ©·Î ¼ö·Î ÀÌ·ç¾îÁ® ÀÖ´Ù.

Registers and Memory

·¹Áö½ºÅÍ¿Í ¸Þ¸ð¸®

GDB's model of the target machine is rather simple. GDB assumes the machine includes a bank of registers and a block of memory. Each register may have a different size.

Ÿ°Ù ¸Ó½ÅÀÇ GDB ¸ðµ¨Àº ´Ù¼Ò °£´ÜÇÏ´Ù. GDB´Â ¸Ó½ÅÀº ·¹Áö½ºÅÍ ÀúÀå¼Ò¿Í ¸Þ¸ð¸® ºí·°À» Æ÷ÇÔÇÑ´Ù°í °¡Á¤ÇÑ´Ù. °¢ ·¹Áö½ºÅÍ´Â ´Ù¸¥ Å©±â¸¦ °¡Áø´Ù.

GDB does not have a magical way to match up with the compiler's idea of which registers are which; however, it is critical that they do match up accurately. The only way to make this work is to get accurate information about the order that the compiler uses, and to reflect that in the REGISTER_NAME and related macros.

GDB´Â ¾î¶² ·¹Áö½ºÅ͵éÀÌ ¾î¶²°ÍÀÌ´Ù¿¡ ´ëÇÑ ÄÄÆÄÀÏ·¯ÀÇ Àνİú ÀÏÄ¡Çϵµ·Ï Çϱâ À§ÇØ »ö´Ù¸¥ ¹æ¹ýÀ» °¡Áø°ÍÀº ¾Æ´Ï´Ù.; ±×·¯³ª, ±×°ÍµéÀº Á¤È®È÷ ÀÏÄ¡ÇØ¾ß ÇÑ´Ù. ÀÌ·¯ÇÑ ÀÛ¾÷À» ¸¸µå´Â À¯ÀÏÇÑ ¹æ¹ýÀº ÄÄÆÄÀÏ·¯°¡ »ç¿ëÇÏ´Â ¼ø¼­¿¡ ´ëÇÑ Á¤È®ÇÑ Á¤º¸¸¦ °¡Áö´Â °ÍÀ̸ç REGISTER_NAME¿Í °ü·Ã ¸ÅÅ©·Î³»¿¡ ¹Ý¿µÇÏ´Â °ÍÀÌ´Ù.

GDB can handle big-endian, little-endian, and bi-endian architectures.

GDB´Â big-endian, little-endian ±×¸®°í bi-endian ¾ÆÅ°ÅØÃĸ¦ ´Ù·ê¼ö ÀÖ´Ù.

Pointers Are Not Always Addresses

Æ÷ÀÎÅÍ´Â Ç×»ó ÁÖ¼Ò°¡ ¾Æ´Ï´Ù.

On almost all 32-bit architectures, the representation of a pointer is indistinguishable from the representation of some fixed-length number whose value is the byte address of the object pointed to. On such machines, the words "pointer" and "address" can be used interchangeably. However, architectures with smaller word sizes are often cramped for address space, so they may choose a pointer representation that breaks this identity, and allows a larger code address space.

°ÅÀÇ ¸ðµç 32-ºñÆ® ¾ÆÅ°ÅØÃÄ¿¡¼­, Æ÷ÀÎÅÍ Ç¥ÇöÀº Æ÷ÀÎÆ®µÇ°í ÀÖ´Â °´Ã¼ÀÇ ÁÖ¼Ò ¹ÙÀÌÆ® °ªÀÎ ¸î¸î °íÁ¤µÈ ±æÀÌ ¼öÀÇ Ç¥Çö½Ä°ú ±¸ºÐÇÒ¼ö ¾ø´Ù. ±×·¯ÇÑ ¸Ó½Å¿¡¼­, pointer¿Í address¶õ ¸»Àº °°ÀÌ »ç¿ëµÈ´Ù. ±×·¯³ª, ÀÛÀº ¿öµå Å©±â¸¦ °¡Áö´Â ¾ÆÅ°ÅØÃÄ´Â ÀÚÁÖ ÁÖ¼Ò °ø°£À» ¾Ë±â ¾î·Æ´Ù. ±×·¡¼­ ±×°ÍµéÀº ÀÌ·¯ÇÑ identity¸¦ ¸ØÃß´Â Æ÷ÀÎÅÍ Ç¥Çö½ÄÀ» ¼±ÅÃÇÏ°í Ä¿´Ù¶õ ÄÚµå ÁÖ¼Ò °ø°£À» Çã¿ëÇÑ´Ù.

For example, the Mitsubishi D10V is a 16-bit VLIW processor whose instructions are 32 bits long(2). If the D10V used ordinary byte addresses to refer to code locations, then the processor would only be able to address 64kb of instructions. However, since instructions must be aligned on four-byte boundaries, the low two bits of any valid instruction's byte address are always zero--byte addresses waste two bits. So instead of byte addresses, the D10V uses word addresses--byte addresses shifted right two bits--to refer to code. Thus, the D10V can use 16-bit words to address 256kb of code space.

¿¹¸¦ µé¾î, Mitsubishi D10V´Â ¸í·É¾î°¡ 32bit long(2)ÀÎ 16-bit VLIW processorÀÌ´Ù. ¸¸ÀÏ D10V°¡ ÄÚµå À§Ä¡¸¦ °¡¸®Å°´Â ÀϹÝÀûÀÎ ¹ÙÀÌÆ® ÁÖ¼Ò¸¦ »ç¿ëÇÑ´Ù¸é, ÇÁ·Î¼¼¼­´Â ¸í·É¾îÀÇ 64kb¸¦ addressÇÒ¼ö ÀÖ´Ù. ±×·¯³ª, ¸í·É¾î´Â 4 ¹ÙÀÌÆ® °æ°è·Î Á¤·ÄµÇ¾î¾ß Çϱ⠶§¹®¿¡, ¾î¶² À¯È¿ÇÑ ¸í·É¾î ¹ÙÀÌÆ® ÁÖ¼ÒÀÇ ÇÏÀ§ 2 ºñÆ®´Â Ç×»ó 0ÀÌ´Ù.--¹ÙÀÌÆ® ÁÖ¼Ò´Â 2 ºñÆ®¸¦ ³¶ºñÇÑ´Ù. ¹ÙÀÌÆ® ÁÖ¼Ò ´ë½Å¿¡, D10V´Â Äڵ带 ÂüÁ¶Çϱâ À§ÇØ ¿öµå ÁÖ¼Ò¸¦ »ç¿ëÇÑ´Ù.--¹ÙÀÌÆ® ÁÖ¼Ò´Â 2 ºñÆ® ¿À¸¥ÂÊÀ¸·Î shiftµÈ´Ù.-- ÀÌ¿Í °°ÀÌ, D10V´Â ÄÚµå ¿µ¿ªÀÇ 256kb¸¦ ¾îµå·¹½ÌÇϱâ À§ÇØ 16 ºñÆ® ¿öµå¸¦ »ç¿ëÇÒ¼ö ÀÖ´Ù.

However, this means that code pointers and data pointers have different forms on the D10V. The 16-bit word 0xC020 refers to byte address 0xC020 when used as a data address, but refers to byte address 0x30080 when used as a code address.

±×·¯³ª, ÀÌ°ÍÀº ÄÚµå Æ÷ÀÎÅÍ¿Í µ¥ÀÌÅÍ Æ÷ÀÎÅÍ´Â D10V¿¡¼­ ´Ù¸¥ ÇüŸ¦ °¡Áø´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù. 16-ºñÆ® ¿öµå 0xC020´Â µ¥ÀÌÅÍ ÁÖ¼Ò·Î½á »ç¿ëµÉ¶§ ¹ÙÀÌÆ® ÁÖ¼Ò 0xC020¸¦ °¡¸®Å²´Ù. ±×·¯³ª ÄÚµå ÁÖ¼Ò·Î½á »ç¿ëµÉ¶§´Â ¹ÙÀÌÆ® ÁÖ¼Ò 0x30080¸¦ °¡¸®Å²´Ù.

(The D10V also uses separate code and data address spaces, which also affects the correspondence between pointers and addresses, but we're going to ignore that here; this example is already too long.)

(D10V´Â ¶ÇÇÑ ÄÚµå¿Í µ¥ÀÌÅÍ ÁÖ¼Ò °ø°£À» ºÐ¸®ÇÒ¶§ »ç¿ëµÇ¸ç, Æ÷ÀÎÅÍ¿Í ÁÖ¼Ò»çÀÌÀÇ »ó°ü°ü°è¿¡ ¿µÇâÀ» ÁØ´Ù. ±×·¯³ª ¿©±â¼­´Â ¹«½ÃÇÑ´Ù.; ÀÌ ¿¹Á¦´Â ÀÌ¹Ì ÃæºÐÈ÷ ±æ´Ù.)

To cope with architectures like this--the D10V is not the only one!---GDB tries to distinguish between addresses, which are byte numbers, and pointers, which are the target's representation of an address of a particular type of data. In the example above, 0xC020 is the pointer, which refers to one of the addresses 0xC020 or 0x30080, depending on the type imposed upon it. GDB provides functions for turning a pointer into an address and vice versa, in the appropriate way for the current architecture.

ÀÌ¿Í °°ÀÌ ¾ÆÅ°ÅØÃĸ¦ ¹üÀ§È­Çϱâ À§ÇØ--D10V´Â Çϳª¸¸ ÀÖÁö ¾Ê´Ù.--GDB´Â ¹ÙÀÌÆ® ¼öÀÎ addresses¿Í ƯÁ¤ µ¥ÀÌÅÍ Å¸ÀÔÀÇ ÁÖ¼Ò¿¡ ´ëÇÑ Å¸°Ù Ç¥Çö½ÄÀÎ pointers »çÀ̸¦ ±¸ºÐÇÒ·Á°í ÇÑ´Ù. À§ ¿¹Á¦¿¡¼­, 0xC020´Â ¿©±â¿¡ ºÎ¿©µÈ ŸÀÔ¿¡ ÀÇÁ¸ÇÏ¿© 0xC020³ª 0x30080 ÁÖ¼ÒÁß Çϳª¸¦ °¡¸®Å°´Â Æ÷ÀÎÅÍÀÌ´Ù. GDB´Â ÇöÀç ¾ÆÅ°ÅØÃÄ¿¡ ¾Ë¸Â´Â ¹æ¹ýÀ¸·Î ÁÖ¼Ò¸¦ Æ÷ÀÎÅÍ·Î ±×¸®°í ±× ¹Ý´ë¸¦ À§ÇÑ ÇÔ¼ö¸¦ Á¦°øÇÑ´Ù.

Unfortunately, since addresses and pointers are identical on almost all processors, this distinction tends to bit-rot pretty quickly. Thus, each time you port GDB to an architecture which does distinguish between pointers and addresses, you'll probably need to clean up some architecture-independent code.

ºÒÇàÇÏ°Ôµµ, ÁÖ¼Ò¿Í Æ÷ÀÎÅÍ´Â °ÅÀÇ ¸ðµç ÇÁ·Î¼¼¼­µé¿¡¼­ µ¿ÀÏÇϱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ±¸ºÐÀº »¡¸® bit-rotÇϱ⠽±´Ù. ÀÌ¿Í °°ÀÌ, ¿©·¯ºÐÀÌ Æ÷ÀÎÅÍ¿Í ÁÖ¼Ò¸¦ ±¸º°ÇÏ´Â ¾ÆÅ°ÅØÃÄ·Î GDB¸¦ Æ÷ÆÃÇÒ¶§¸¶´Ù, ¿©·¯ºÐÀº ¾Æ¸¶ ¾ÆÅ°ÅØÃÄ-µ¶¸³ÀûÀÎ Äڵ带 ¾ø¾Ù ÇÊ¿ä°¡ ÀÖ´Ù.

Here are functions which convert between pointers and addresses:

¿©±â¿¡ Æ÷ÀÎÅÍ¿Í ÁÖ¼Ò»çÀÌÀÇ º¯È¯À» À§ÇÑ ÇÔ¼ö°¡ ÀÖ´Ù.:

Function: CORE_ADDR extract_typed_address (void *buf, struct type *type)
Treat the bytes at buf as a pointer or reference of type type, and return the address it represents, in a manner appropriate for the current architecture. This yields an address GDB can use to read target memory, disassemble, etc. Note that buf refers to a buffer in GDB's memory, not the inferior's.

Æ÷ÀÎÅͳª ŸÀÔ type¿¡ ´ëÇÑ ÂüÁ¶·Î½á buf ¹ÙÀÌÆ®µéÀ» ´Ù·ç°í, ÇöÀç ¾ÆÅ°ÅØÃÄ¿¡ Àû´çÇÑ ¹æ¹ýÀ¸·Î ÀÌ°ÍÀÌ ³ªÅ¸³»´Â ÁÖ¼Ò¸¦ ¹ÝȯÇÑ´Ù. ÀÌ°ÍÀº GDB°¡ Ÿ°Ù ¸Þ¸ð¸®, disaseembleµîµî¿¡¼­ ÀÐÀ»¼ö ÀÖ´Â ÁÖ¼Ò¸¦ »êÃâÇÑ´Ù. buf´Â GDB ¸Þ¸ð¸®³» ¹öÆÛ¸¦ °¡¸®Å°¸ç ³»ºÎ¸¦ °¡¸®Å°´Â°ÍÀÌ ¾Æ´Ï´Ù.

For example, if the current architecture is the Intel x86, this function extracts a little-endian integer of the appropriate length from buf and returns it. However, if the current architecture is the D10V, this function will return a 16-bit integer extracted from buf, multiplied by four if type is a pointer to a function.

¿¹¸¦ µé¾î, ¸¸ÀÏ ÇöÀç ¾ÆÅ°ÅØÃÄ°¡ Intel x86À̶ó¸é, ÀÌ ÇÔ¼ö´Â buf¿¡¼­ Àû´çÇÑ ±æÀÌÀÇ little-endian integer¸¦ »Ì¾Æ³»°í ÀÌ°ÍÀ» ¹ÝȯÇÑ´Ù. ±×·¯³ª, ¸¸ÀÏ ÇöÀç ¾ÆÅ°ÅØÃÄ°¡ D10V¶ó¸é, ÀÌ ÇÔ¼ö´Â buf¿¡¼­ »Ì¾Æ³½ 16 ºñÆ® Á¤¼ö¸¦ ¹ÝȯÇϸç, ¸¸ÀÏ type°¡ ÇÔ¼ö¿¡ ´ëÇÑ Æ÷ÀÎÅͶó¸é 4¸¦ °öÇÑ 16ºñÆ® Á¤¼ö¸¦ ¹ÝȯÇÑ´Ù.

If type is not a pointer or reference type, then this function will signal an internal error.

¸¸ÀÏ typeÀÌ Æ÷ÀÎÅͳª ÂüÁ¶ ŸÀÔÀÌ ¾Æ´Ï¶ó¸é, ÀÌ ÇÔ¼ö´Â ³»ºÎ ¿¡·¯¸¦ º¸³½´Ù.

Function: CORE_ADDR store_typed_address (void *buf, struct type *type, CORE_ADDR addr)
Store the address addr in buf, in the proper format for a pointer of type type in the current architecture. Note that buf refers to a buffer in GDB's memory, not the inferior's.

ÇöÀç ¾ÆÅ°ÅØÃÄ¿¡¼­ ŸÀÔ type Æ÷ÀÎÅÍ¿¡ ¾Ë¸Â´Â Çü½ÄÀ¸·Î, buf¿¡ ÁÖ¼Ò addr¸¦ ÀúÀåÇÑ´Ù. buf´Â GDB ¸Þ¸ð¸®³» ¹öÆÛ¸¦ °¡¸®Å°¸ç ³»ºÎ¸¦ °¡¸®Å°´Â°ÍÀÌ ¾Æ´Ï´Ù.

For example, if the current architecture is the Intel x86, this function stores addr unmodified as a little-endian integer of the appropriate length in buf. However, if the current architecture is the D10V, this function divides addr by four if type is a pointer to a function, and then stores it in buf.

¿¹¸¦ µé¾î, ¸¸ÀÏ ÇöÀç ¾ÆÅ°ÅØÃÄ°¡ Intel x86À̶ó¸é, ÀÌ ÇÔ¼ö´Â buf¿¡¼­ Àû´çÇÑ ±æÀÌÀÇ little-endian Á¤¼ö·Î½á ¼öÁ¤µÇÁö ¾ÊÀº addr¸¦ ÀúÀåÇÑ´Ù. ±×·¯³ª, ¸¸ÀÏ ÇöÀç ¾ÆÅ°ÅØÃÄ°¡ D10V¶ó¸é, ÀÌ ÇÔ¼ö´Â ¸¸ÀÏ typeÀÌ ÇÔ¼ö¿¡ ´ëÇÑ Æ÷ÀÎÅͶó¸é 4·Î addr¸¦ ³ª´©°í buf¿¡ ÀúÀåÇÑ´Ù.

If type is not a pointer or reference type, then this function will signal an internal error.

¸¸ÀÏ typeÀÌ Æ÷ÀÎÅͳª ÂüÁ¶ ŸÀÔÀÌ ¾Æ´Ï¶ó¸é, ÀÌ ÇÔ¼ö´Â ³»ºÎ ¿¡·¯¸¦ º¸³½´Ù.

Function: CORE_ADDR value_as_pointer (value_ptr val)
Assuming that val is a pointer, return the address it represents, as appropriate for the current architecture.

valÀÌ Æ÷ÀÎÅͶó°í °¡Á¤ÇÏ°í, ÇöÀç ¾ÆÅ°ÅØÃÄ¿¡ ¾Ë¸Â°Ô Ç¥ÇöÇÑ ÁÖ¼Ò¸¦ ¹ÝȯÇÑ´Ù.

This function actually works on integral values, as well as pointers. For pointers, it performs architecture-specific conversions as described above for extract_typed_address.

ÀÌ ÇÔ¼ö´Â ½ÇÁ¦·Î Æ÷ÀÎÅÍó·³ Á¤¼ö °ªÀ¸·Î ÀÛµ¿ÇÑ´Ù. Æ÷ÀÎÅ͸¦ À§ÇØ, ÀÌ ÇÔ¼ö´Â extract_typed_address¸¦ À§ÇØ À§¿¡¼­ ±â¼úÇÑ ¾ÆÅ°ÅØÃÄ ÀÇÁ¸ÀûÀÎ º¯È¯À» ÇÑ´Ù.

Function: CORE_ADDR value_from_pointer (struct type *type, CORE_ADDR addr)
Create and return a value representing a pointer of type type to the address addr, as appropriate for the current architecture. This function performs architecture-specific conversions as described above for store_typed_address.

ÇöÀç ¾ÆÅ°ÅØÃÄ¿¡ ¾Ë¸Â°Ô, ÁÖ¼Ò addr¸¦ À§ÇØ Å¸ÀÔ typeÀÇ Ç¥Çö½Ä °ªÀ» ¸¸µé°í ¹ÝȯÇÑ´Ù. ÀÌ ÇÔ¼ö´Â store_typed_address¸¦ À§ÇØ À§¿¡¼­ ±â¼úÇÑ °Íó·³ ¾ÆÅ°ÅØÃÄ ÀÇÁ¸ÀûÀÎ º¯È¯À» ÇÑ´Ù.

GDB also provides functions that do the same tasks, but assume that pointers are simply byte addresses; they aren't sensitive to the current architecture, beyond knowing the appropriate endianness.

GDB´Â °°Àº ŽºÅ©°¡ ÇÏ´Â ÇÔ¼ö¸¦ Á¦°øÇÑ´Ù. ±×·¯³ª Æ÷ÀÎÅ͵éÀº °£´ÜÈ÷ ¹ÙÀÌÆ® ÁÖ¼Ò¶ó°í °¡Á¤ÇÑ´Ù.; ±×°ÍµéÀº Àû´çÇÑ endianÀ» ¾Æ´Â°ÍÀ» ³Ñ¾î, ÇöÀç ¾ÆÅ°ÅØÃÄ¿¡ ¹Î°¨ÇÏÁö ¾Ê´Â´Ù.

Function: CORE_ADDR extract_address (void *addr, int len)
Extract a len-byte number from addr in the appropriate endianness for the current architecture, and return it. Note that addr refers to GDB's memory, not the inferior's.

ÇöÀç ¾ÆÅ°ÅØÃĸ¦ À§ÇÑ Àû´çÇÑ endianÀÇ addr¿¡¼­ len ¹ÙÀÌÆ® ¼ö¸¦ ¾Ë¾Æ³»°í ±×°ÍÀ» ¹ÝȯÇÑ´Ù. addr´Â GDB ¸Þ¸ð¸®¸¦ °¡¸®Å°¸ç ³»ºÎ¸¦ °¡¸®Å°´Â°ÍÀÌ ¾Æ´Ï´Ù.

This function should only be used in architecture-specific code; it doesn't have enough information to turn bits into a true address in the appropriate way for the current architecture. If you can, use extract_typed_address instead.

ÀÌ ÇÔ¼ö´Â ¾ÆÅ°ÅØÃÄ ÀÇÁ¸ÀûÀÎ Äڵ忡¼­¸¸ »ç¿ëµÇ¾î¾ß ÇÑ´Ù.; ÀÌ ÇÔ¼ö´Â ÇöÀç ¾ÆÅ°ÅØÃÄ¿¡¼­ Àû´çÇÑ ¹æ¹ýÀ¸·Î ½ÇÁ¦ÁÖ¼Ò·Î ºñÆ®µéÀ» ¹Ù²Ù±â À§ÇÑ ÃæºÐÇÑ Á¤º¸¸¦ °¡Áö°í ÀÖÁö ¾Ê´Ù. ¸¸ÀÏ ¿©·¯ºÐÀÌ ÇÒ¼ö ÀÖ´Ù¸é, extract_typed_address¸¦ »ç¿ëÇضó.

Function: void store_address (void *addr, int len, LONGEST val)
Store val at addr as a len-byte integer, in the appropriate endianness for the current architecture. Note that addr refers to a buffer in GDB's memory, not the inferior's.

ÇöÀç ¾ÆÅ°ÅØÃĸ¦ À§ÇÑ Àû´çÇÑ endianÀ¸·Î len-¹ÙÀÌÆ® Á¤¼ö·Î½á val¸¦ addr·Î ÀúÀåÇÑ´Ù. addr´Â GDB ¸Þ¸ð¸®³» ¹öÆÛ¸¦ °¡¸®Å°Áö ¾Ê°í ³»ºÎ¸¦ °¡¸®Å²´Ù.

This function should only be used in architecture-specific code; it doesn't have enough information to turn a true address into bits in the appropriate way for the current architecture. If you can, use store_typed_address instead.

ÀÌ ÇÔ¼ö´Â ¾ÆÅ°ÅØÃÄ ÀÇÁ¸ÀûÀÎ Äڵ忡¼­¸¸ »ç¿ëµÇ¾î¾ß ÇÑ´Ù. ±×°ÍÀº ÇöÀç ¾ÆÅ°ÅØÃÄ¿¡ Àû´çÇÑ ¹æ¹ýÀ¸·Î ½ÇÁ¦ ÁÖ¼Ò¸¦ ºñÆ®·Î ¹Ù²Ù±â À§ÇÑ ÃæºÐÇÑ Á¤º¸¸¦ °¡Áö°í ÀÖÁö ¾Ê´Ù. ¸¸ÀÏ ¿©·¯ºÐÀÌ ÇÒ¼ö ÀÖ´Ù¸é, store_typed_address¸¦ »ç¿ëÇضó.

Here are some macros which architectures can define to indicate the relationship between pointers and addresses. These have default definitions, appropriate for architectures on which all pointers are simple byte addresses.

¿©±â¿¡ ¾ÆÅ°ÅØÃÄ°¡ Æ÷ÀÌÅÍ¿Í ÁÖ¼Ò »çÀÌÀÇ °ü°è¸¦ °¡¸®Å°µµ·Ï Á¤ÀÇÇÒ¼ö ÀÖ´Â ¸î¸î ¸ÅÅ©·Î°¡ ÀÖ´Ù. À̰͵éÀº ±âº» Á¤ÀÇÀ̸ç, ¸ðµç Æ÷ÀÎÅ͵éÀÌ °£´ÜÈ÷ ¹ÙÀÌÆ® ÁÖ¼ÒÀÎ ¾ÆÅ°ÅØÃÄ¿¡ Àû´çÇÑ

Target Macro: CORE_ADDR POINTER_TO_ADDRESS (struct type *type, char *buf)
Assume that buf holds a pointer of type type, in the appropriate format for the current architecture. Return the byte address the pointer refers to.

ÇöÀç ¾ÆÅ°ÅØÃĸ¦ À§ÇÑ Àû´çÇÑ Çü½ÄÀ¸·Î, buf´Â Æ÷ÀÎÅÍ Å¸ÀÔ type¸¦ °¡Áø´Ù°í °¡Á¤ÇÑ´Ù. Æ÷ÀÎÅÍ°¡ ÂüÁ¶ÇÏ´Â ¹ÙÀÌÆ® ÁÖ¼Ò¸¦ ¹ÝȯÇÑ´Ù.

This function may safely assume that type is either a pointer or a C++ reference type.

ÀÌ ÇÔ¼ö´Â type´Â Æ÷ÀÎÅͳª C++ ÂüÁ¶ ŸÀÔÁß Çϳª·Î °¡Á¤ÇÑ´Ù.

Target Macro: void ADDRESS_TO_POINTER (struct type *type, char *buf, CORE_ADDR addr)
Store in buf a pointer of type type representing the address addr, in the appropriate format for the current architecture.

ÇöÀç ¾ÆÅ°ÅØÃĸ¦ À§ÇÑ Àû´çÇÑ Çü½ÄÀ¸·Î, ÁÖ¼Ò addr¸¦ Ç¥ÇöÇÏ´Â Æ÷ÀÎÅÍ Å¸ÀÔ type¸¦ buf¿¡ ÀúÀåÇÑ´Ù.

This function may safely assume that type is either a pointer or a C++ reference type.

ÀÌ ÇÔ¼ö´Â type´Â Æ÷ÀÎÅͳª C++ ÂüÁ¶ ŸÀÔÁß Çϳª·Î °¡Á¤ÇÑ´Ù.

Using Different Register and Memory Data Representations

´Ù¸¥ ·¹Áö½ºÅÍ¿Í ¸Þ¸ð¸® µ¥ÀÌÅÍ Ç¥Çö½Ä »ç¿ëÇϱâ

Some architectures use one representation for a value when it lives in a register, but use a different representation when it lives in memory. In GDB's terminology, the raw representation is the one used in the target registers, and the virtual representation is the one used in memory, and within GDB struct value objects.

¸î¸î ¾ÆÅ°ÅØÃÄ´Â ·¹Áö½ºÅÍ¿¡ ³²¾Æ ÀÖ´Â °ªÀ» À§ÇØ ÇϳªÀÇ Ç¥Çö½ÄÀ» »ç¿ëÇÑ´Ù. ±×·¯³ª ¸Þ¸ð¸®³»¿¡ ÀÖÀ»¶§´Â ´Ù¸¥ Ç¥Çö½ÄÀ» »ç¿ëÇÑ´Ù. GDB ¿ë¹ý¿¡¼­, raw Ç¥Çö½ÄÀº Ÿ°Ù ·¹Áö½ºÅÍ¿¡¼­ »ç¿ëµÇ´Â °ÍÀ̸ç virtual Ç¥Çö½ÄÀº ¸Þ¸ð¸®¿Í GDB struct value °´Ã¼³»¿¡¼­ »ç¿ëµÇ´Â °ÍÀÌ´Ù.

For almost all data types on almost all architectures, the virtual and raw representations are identical, and no special handling is needed. However, they do occasionally differ. For example:

°ÅÀÇ ¸ðµç ¾ÆÅ°ÅØÃÄ¿¡¼­ °ÅÀÇ ¸ðµç µ¥ÀÌÅÍ Ç¥ÇöÀ» À§ÇØ, virtual°ú raw Ç¥Çö½ÄÀº °°À¸¸ç ¾î¶°ÇÑ Æ¯º°ÇÑ Çڵ鸵µµ ÇÊ¿äÇÏÁö ¾Ê´Ù. ±×·¯³ª, ±×°ÍµéÀº °æ¿ì¿¡ µû¶ó ´Ù¸£´Ù. ¿¹¸¦ µé¾î;

In general, the raw representation is determined by the architecture, or GDB's interface to the architecture, while the virtual representation can be chosen for GDB's convenience. GDB's register file, registers, holds the register contents in raw format, and the GDB remote protocol transmits register values in raw format.

ÀϹÝÀûÀ¸·Î, raw Ç¥Çö½ÄÀº ¾ÆÅ°ÅØÃijª ¾ÆÅ°ÅØÃÄ¿¡ ´ëÇÑ GDB ÀÎÅÍÆäÀ̽º¿¡ ÀÇÇØ °áÁ¤µÇ¸ç, virtual Ç¥Çö½ÄÀº GDB ÆíÀÌ¿¡ µû¶ó ¼±Åõɼö ÀÖ´Ù. GDB ·¹Áö½ºÅÍ ÆÄÀÏ registers´Â raw ÇüÅ·Π·¹Áö½ºÅÍ ³»¿ëÀ» °¡Áö¸ç GDB ¿ø°Ý ÇÁ·ÎÅäÄÝÀº raw ÇüÅ¿¡ ·¹Áö½ºÅÍ °ªÀ» Àü´ÞÇÑ´Ù.

Your architecture may define the following macros to request conversions between the raw and virtual format:

¿©·¯ºÐÀÇ ¾ÆÅ°ÅØÃÄ´Â raw¿Í virtual ÇüÅ »çÀÌÀÇ º¯È¯À» ¿ä±¸ÇÏ´Â ´ÙÀ½ ¸ÅÅ©·Î¸¦ Á¤ÀÇÇÑ´Ù:

Target Macro: int REGISTER_CONVERTIBLE (int reg)
Return non-zero if register number reg's value needs different raw and virtual formats.

¸¶´×¤© ·¹Áö½ºÅÍ ¼ö reg °ªÀº ´Ù¸¥ raw¿Í virtual Çü½ÄÀÌ ÇÊ¿äÇÏ´Ù¸é 0ÀÌ ¾Æ´Ñ°ªÀ» ¹ÝȯÇÑ´Ù.

You should not use REGISTER_CONVERT_TO_VIRTUAL for a register unless this macro returns a non-zero value for that register.

¿©·¯ºÐ´À ¸¸ÀÏ ÀÌ ¸ÅÅ©·Î°¡ ±× ·¹Áö½ºÅ͸¦ À§ÇØ 0ÀÌ ¾Æ´Ñ °ªÀ» ¹ÝȯÇÏÁö ¾Ê´Â´Ù¸é, ·¹Áö½ºÅ͸¦ À§ÇØ REGISTER_CONVERT_TO_VIRTUALÀ» »ç¿ëÇؼ­´Â ¾ÈµÈ´Ù.

Target Macro: int REGISTER_RAW_SIZE (int reg)
The size of register number reg's raw value. This is the number of bytes the register will occupy in registers, or in a GDB remote protocol packet.

·¹Áö½ºÅÍ ¼ö regÀÇ raw °ªÀÇ Å©±â. ÀÌ°ÍÀº registers³ª GDB ¿ø°Ý ÇÁ·ÎÅäÄÝ ÆÐŶ¿¡¼­ Â÷ÁöÇÏ´Â ·¹Áö½ºÅÍ ¹ÙÀÌÆ® ¼öÀÌ´Ù.

Target Macro: int REGISTER_VIRTUAL_SIZE (int reg)
The size of register number reg's value, in its virtual format. This is the size a struct value's buffer will have, holding that register's value.

virtual Çü½Ä¿¡¼­ ·¹Áö½ºÅÍ ¼ö reg °ªÀÇ Å©±â. ÀÌ°ÍÀº ÇØ´ç ·¹Áö½ºÅÍ °ªÀ» °¡Áö´Â struct value ¹öÆÛ Å©±âÀÌ´Ù.

Target Macro: struct type *REGISTER_VIRTUAL_TYPE (int reg)
This is the type of the virtual representation of register number reg. Note that there is no need for a macro giving a type for the register's raw form; once the register's value has been obtained, GDB always uses the virtual form.

ÀÌ°ÍÀº ·¹Áö½ºÅÍ ¼ö regÀÇ virtual Ç¥Çö½ÄÀÇ Å¸ÀÔÀÌ´Ù. °Å±â¿¡´Â ·¹Áö½ºÅÍ raw Çü½ÄÀ» À§ÇØ Å¸ÀÔÀ» ÁÖ´Â ¸ÅÅ©·Î°¡ ÇÊ¿äÇÏÁö ¾Ê´Ù.;ÀÏ´Ü ·¹Áö½ºÅÍ °ªÀ» ¾ò´Â´Ù¸é, GDB´Â Ç×»ó virtual Çü½ÄÀ» »ç¿ëÇÑ´Ù.

Target Macro: void REGISTER_CONVERT_TO_VIRTUAL (int reg, struct type *type, char *from, char *to)
Convert the value of register number reg to type, which should always be REGISTER_VIRTUAL_TYPE (reg). The buffer at from holds the register's value in raw format; the macro should convert the value to virtual format, and place it at to.

·¹Áö½ºÅÍ ¼ö regÀÇ °ªÀ» type·Î º¯È¯Çϸç Ç×»ó REGISTER_VIRTUAL_TYPE (reg)À̾î¾ß ÇÑ´Ù. from¿¡¼­ ¹öÆÛ´Â raw Çü½Ä³» ·¹Áö½ºÅÍ °ªÀ» °¡Áø´Ù.; ¸ÅÅ©·Î´Â °ªÀ» virtual Çü½ÄÀ¸·Î ¹Ù²Ù¸ç ±×°ÍÀ» to¿¡ ³õ´Â´Ù.

Note that REGISTER_CONVERT_TO_VIRTUAL and REGISTER_CONVERT_TO_RAW take their reg and type arguments in different orders.

REGISTER_CONVERT_TO_VIRTUAL¿Í REGISTER_CONVERT_TO_RAW´Â ´Ù¸¥ ¼ø¼­·Î reg¿Í type ÀÎÀÚ¸¦ °¡Áø´Ù.

You should only use REGISTER_CONVERT_TO_VIRTUAL with registers for which the REGISTER_CONVERTIBLE macro returns a non-zero value.

¿©·¯ºÐÀº REGISTER_CONVERTIBLE ¸ÅÅ©·Î°¡ 0ÀÌ ¾Æ´Ñ °ªÀ¸·Î ¸®ÅÏÇÏ´Â ·¹Áö½ºÅ͸¦ °¡Áö´Â REGISTER_CONVERT_TO_VIRTUAL¸¦ »ç¿ëÇØ¾ß ÇÑ´Ù.

Target Macro: void REGISTER_CONVERT_TO_RAW (struct type *type, int reg, char *from, char *to)
Convert the value of register number reg to type, which should always be REGISTER_VIRTUAL_TYPE (reg). The buffer at from holds the register's value in raw format; the macro should convert the value to virtual format, and place it at to.

·¹Áö½ºÅÍÀÇ ¼ö regÀÇ °ªÀ» type·Î ¹Ù²Ù°í, ÀÌ°ÍÀº Ç×»ó REGISTER_VIRTUAL_TYPE (reg)À̾î¾ß ÇÑ´Ù. from¿¡¼­ ¹öÆÛ´Â raw Çü½ÄÀÇ ·¹Áö½ºÅÍ °ªÀ» °¡Áø´Ù.;¸ÅÅ©·Î´Â °ªÀ» virtual Çü½ÄÀ̾î¾ß Çϸç, toÀ¸·Î ³õ¾Æ¾ß ÇÑ´Ù.

Note that REGISTER_CONVERT_TO_VIRTUAL and REGISTER_CONVERT_TO_RAW take their reg and type arguments in different orders.

REGISTER_CONVERT_TO_VIRTUAL°ú REGISTER_CONVERT_TO_RAW´Â ´Ù¸¥ ¼ø¼­·Î reg¿Í type ÀÎÀÚ¸¦ °¡Áø´Ù.

Frame Interpretation

ÇÁ·¹ÀÓ Çؼ®

Inferior Call Setup

³»ºÎ Call ¼³Á¤

Compiler Characteristics

Compiler Ư¼º

Target Conditionals

Ÿ°Ù Á¶°Çµé

This section describes the macros that you can use to define the target machine.

ADDITIONAL_OPTIONS
ADDITIONAL_OPTION_CASES
ADDITIONAL_OPTION_HANDLER
ADDITIONAL_OPTION_HELP
These are a set of macros that allow the addition of additional command line options to GDB. They are currently used only for the unsupported i960 Nindy target, and should not be used in any other configuration.

À̰͵éÀº Ãß°¡ÀûÀ¸·Î GDB¿¡ ¸í·É¾î ¶óÀÎ ¿É¼ÇÀ» Çã¿ëÇÏ´Â ¸ÅÅ©·Î ÁýÇÕµéÀÌ´Ù. À̰͵éÀº ÇöÀç Áö¿øµÇÁö ¾Ê´Â i960 Nindy Ÿ°Ù¿¡¼­¸¸ »ç¿ëµÇ¸ç ´Ù¸¥ ¼³Á¤»çÇ׿¡¼­´Â »ç¿ëµÇ¾î¼­´Â ¾ÈµÈ´Ù.

ADDR_BITS_REMOVE (addr)
If a raw machine instruction address includes any bits that are not really part of the address, then define this macro to expand into an expression that zeroes those bits in addr. This is only used for addresses of instructions, and even then not in all contexts.

¸¸ÀÏ ¾î¶² ºñÆ®¸¦ Æ÷ÇÔÇÏ´Â raw ¸Ó½Å ¸í·É¾î ÁÖ¼Ò°¡ ÁÖ¼ÒÀÇ ½ÇÁ¦ ºÎºÐÀÌ ¾Æ´Ï¶ó¸é, ±×·¯¸é addr³» ÀÌµé ºñÆ®µéÀÌ 0ÀΠǥÇö½ÄÀ¸·Î È®ÀåÇϵµ·Ï ÀÌ ¸ÅÅ©·Î¸¦ Á¤ÀÇÇضó. ÀÌ°ÍÀº ¸í·É¾î ÁÖ¼Ò¸¦ À§Çؼ­¸¸ »ç¿ëµÇ¸ç ¸ðµç ¹®¸Æ¿¡¼­´Â ¾Æ´Ï´Ù.

For example, the two low-order bits of the PC on the Hewlett-Packard PA 2.0 architecture contain the privilege level of the corresponding instruction. Since instructions must always be aligned on four-byte boundaries, the processor masks out these bits to generate the actual address of the instruction. ADDR_BITS_REMOVE should filter out these bits with an expression such as ((addr) & ~3).

¿¹¸¦ µé¾î, Hewlett-Packard PA 2.0 ¾ÆÅ°ÅØÃÄ¿¡¼­ PCÀÇ ÇÏÀ§ 2ºñÆ®´Â ¸í·É¾î¿¡ »óÀÀÇÏ´Â ¿ì¼±±Ç ·¹º§À» Æ÷ÇÔÇÑ´Ù. ¸í·É¾î´Â 4 ¹ÙÀÌÆ® °æ°è·Î Á¤·ÄµÇ¾î¾ßÇϱ⠶§¹®¿¡, ÇÁ·Î¼¼¼­´Â ¸í·É¾îÀÇ ½ÇÁ¦ ÁÖ¼Ò¸¦ ¸¸µé±â À§ÇØ ÀÌµé ºñÆ®¸¦ ¸¶½ºÅ©ÇÑ´Ù. ADDR_BITS_REMOVE´Â ((addr) & ~3) °°Àº Ç¥Çö½ÄÀ» °¡Áö´Â ÀÌµé ºñÆ®¸¦ ÇÊÅÍÇØ¾ß ÇÑ´Ù.

ADDRESS_TO_POINTER (type, buf, addr)
Store in buf a pointer of type type representing the address addr, in the appropriate format for the current architecture. This macro may safely assume that type is either a pointer or a C++ reference type. See section Target Architecture Definition.

ÇöÀç ¾ÆÅ°ÅØÃÄ¿¡ Àû´çÇÑ Çü½ÄÀ¸·Î, ÁÖ¼Ò addr¸¦ Ç¥ÇöÇÏ´Â Æ÷ÀÎÅÍ Å¸ÀÔ typeÀ» buf¿¡ ÀúÀåÇÑ´Ù. ÀÌ ¸ÅÅ©·Î´Â type´Â Æ÷ÀÎÅͳª C++ ÂüÁ¶ ŸÀÔÁß Çϳª¶ó´Â°ÍÀ» °¡Á¤ÇÑ´Ù. Ÿ°Ù ¾ÆÅ°ÅØÃÄ Á¤ÀǼ½¼ÇÀ» ÂüÁ¶Çضó.

BEFORE_MAIN_LOOP_HOOK
Define this to expand into any code that you want to execute before the main loop starts. Although this is not, strictly speaking, a target conditional, that is how it is currently being used. Note that if a configuration were to define it one way for a host and a different way for the target, GDB will probably not compile, let alone run correctly. This macro is currently used only for the unsupported i960 Nindy target, and should not be used in any other configuration.

main ·çÇÁ¸¦ ½ÃÀÛÈ÷±âÀü¿¡ ½ÇÇàÇÏ±æ ¿øÇÏ´Â ÄÚµå·Î È®ÀåÇϱâ À§ÇØ ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. ¾ö°ÝÈ÷ ¸»Çؼ­, ÀÌ°ÍÀÌ Å¸°Ù Á¶°ÇÀÌ ¾Æ´Ô¿¡µµ ºÒ±¸ÇÏ°í ÇöÀç »ç¿ëµÇ´Â ¹æ¹ýÀÌ´Ù. ¸¸ÀÏ ¼³Á¤»çÇ×ÀÌ È£½ºÆ®¸¦ À§ÇØ ¹æ¹ý°ú Ÿ°ÙÀ» À§ÇÑ ´Ù¸¥ ¹æ¹ýÀÌ Á¤ÀǵǾî ÀÖµû¸é, GDB´Â ¾Æ¸¶µµ ÄÄÆÄÀϵÇÁö ¾Ê°í, Á¤È®È÷ È¥ÀÚ µ¹¾Æ°¡µµ·Ï Çã¿ëµÇÁö ¾Ê´Â´Ù. ÀÌ ¸ÅÅ©·Î´Â ÇöÀç´Â Áö¿øµÇÁö ¾Ê´Â i960 Nindy Ÿ°Ù¿¡¼­¸¸ »ç¿ëµÇ¸ç ´Ù¸¥ ¼³Á¤»çÇ× ¿¡¼­ »ç¿ëµÇ¾î¼­´Â ¾ÈµÈ´Ù.

BELIEVE_PCC_PROMOTION
Define if the compiler promotes a short or char parameter to an int, but still reports the parameter as its original type, rather than the promoted type. ¸¸ÀÏ ÄÄÆÄÀÏ·¯°¡ short³ª char ÀÎÀÚ¸¦ int·Î º¯°æÇÑ´Ù¸é Á¤ÀÇÇÑ´Ù. ±×·¯³ª ¿©ÀüÈ÷ º¯°æµÈ ŸÀÔº¸´Ù´Â ¿ø ŸÀÔó·³ ÆĶó¹ÌÅ͸¦ º¸°íÇÑ´Ù.
BELIEVE_PCC_PROMOTION_TYPE
Define this if GDB should believe the type of a short argument when compiled by pcc, but look within a full int space to get its value. Only defined for Sun-3 at present.

¸¸ÀÏ GDB°¡ pcc·Î ÄÄÆÄÀϵɶ§ ŸÀÔ short ÀÎÀÚ¸¦ ¹Ï´Â´Ù¸é ÀÌ°ÍÀ» Á¤ÀÇÇضó. ±×·¯³ª ±× °ªÀ» °¡Áö±â À§ÇØ int °ø°£¾È¿¡¼­ º¸¾Æ¾ß ÇÑ´Ù. ÇöÀç´Â Sun-3¿¡¼­¸¸ Á¤ÀǵȴÙ.

BITS_BIG_ENDIAN
Define this if the numbering of bits in the targets does not match the endianness of the target byte order. A value of 1 means that the bits are numbered in a big-endian bit order, 0 means little-endian.

Ÿ°Ù³» ºñÆ®ÀÇ ¼ö°¡ Ÿ°Ù ¹ÙÀÌÆ® ¼ø¼­ÀÇ endian°ú ÀÏÄ¡ÇÏÁö ¾Ê´Â´Ù¸é ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. °ª 1Àº ±× ºñÆ®°¡ big-endian ºñÆ® ¼ø¼­¶ó´Â°ÍÀ» ÀǹÌÇϸç, 0Àº little-endianÀ» ÀǹÌÇÑ´Ù.

BREAKPOINT
This is the character array initializer for the bit pattern to put into memory where a breakpoint is set. Although it's common to use a trap instruction for a breakpoint, it's not required; for instance, the bit pattern could be an invalid instruction. The breakpoint must be no longer than the shortest instruction of the architecture. BREAKPOINT has been deprecated in favor of BREAKPOINT_FROM_PC.

ÀÌ°ÍÀº breakpoint°¡ ¼³Á¤µÇ¾î ÀÖ´Â ¸Þ¸ð¸® ¿µ¿ªÀ¸·Î ºñÆ® ÆÐÅÏÀ» ³Ö±â À§ÇÑ ¹®ÀÚ ¹è¿­ initializerÀÌ´Ù. ºñ·Ï ÀÌ°ÍÀÌ breakpoint¸¦ À§ÇÑ trap ¸í·É¾î¸¦ »ç¿ëÇÑ´Ù ÇÒÁö¶óµµ, ¿ä±¸µÇÁö´Â ¾Ê´Â´Ù.; ¿¹¸¦ µé¾î, bit ÆÐÅÏÀº ¹«È¿ÇÑ ¸í·É¾îÀÌ´Ù. breakpoint´Â ¾ÆÅ°ÅØÃÄÀÇ °¡Àå ÀÛÀº ¸í·É¾îº¸´Ù ±æ¾î¼­´Â ¾ÈµÈ´Ù. BREAKPOINT´Â BREAKPOINT_FROM_PC ¶§¹®¿¡ ¹«½ÃµÈ´Ù.

BIG_BREAKPOINT
LITTLE_BREAKPOINT
Similar to BREAKPOINT, but used for bi-endian targets. BIG_BREAKPOINT and LITTLE_BREAKPOINT have been deprecated in favor of BREAKPOINT_FROM_PC.

BREAKPOINT¿Í ºñ½ÁÇÏÁö¸¸, bi-endian Ÿ°ÙÀ» À§ÇØ »ç¿ëµÈ´Ù. BIG_BREAKPOINT¿Í LITTLE_BREAKPOINT´Â BREAKPOINT_FROM_PC ¶§¹®¿¡ ¹«½ÃµÈ´Ù.

REMOTE_BREAKPOINT
LITTLE_REMOTE_BREAKPOINT
BIG_REMOTE_BREAKPOINT
Similar to BREAKPOINT, but used for remote targets. BIG_REMOTE_BREAKPOINT and LITTLE_REMOTE_BREAKPOINT have been deprecated in favor of BREAKPOINT_FROM_PC.

BREAKPOINT¿Í ºñ½ÁÇÏÁö¸¸, ¿ø°Ý Ÿ°ÙÀ» À§ÇØ »ç¿ëµÈ´Ù. BIG_REMOTE_BREAKPOINT¿Í LITTLE_REMOTE_BREAKPOINT´Â BREAKPOINT_FROM_PC ¶§¹®¿¡ ¹«½ÃµÈ´Ù.

BREAKPOINT_FROM_PC (pcptr, lenptr)
Use the program counter to determine the contents and size of a breakpoint instruction. It returns a pointer to a string of bytes that encode a breakpoint instruction, stores the length of the string to *lenptr, and adjusts pc (if necessary) to point to the actual memory location where the breakpoint should be inserted.

³»¿ë°ú breakpoint ¸í·É¾îÀÇ Å©±â¸¦ °áÁ¤Çϱâ À§ÇØ ÇÁ·Î±×·¥ ¼ö¸¦ »ç¿ëÇÑ´Ù. ÀÌ°ÍÀº breakpoint ¸í·É¾î¸¦ ÀÎÄÚµåÇÏ´Â ¹®ÀÚ¿­ ¹ÙÀÌÆ®¿¡ ´ëÇÑ Æ÷ÀÎÅ͸¦ ¹ÝȯÇϸç, ¹®ÀÚ¿­ÀÇ ±æÀ̸¦ *lenptr¿¡ ÀúÀåÇÏ°í pc(¸¸ÀÏ ÇÊ¿äÇÏ´Ù¸é)¸¦ breakpoint°¡ »ðÀԵǾî¾ß ÇÏ´Â ½ÇÁ¦ ¸Þ¸ð¸® À§Ä¡·Î ¸ÂÃá´Ù. Although it is common to use a trap instruction for a breakpoint, it's not required; for instance, the bit pattern could be an invalid instruction. The breakpoint must be no longer than the shortest instruction of the architecture. Replaces all the other BREAKPOINT macros.

ºñ·Ï ÀÌ°ÍÀÌ breakpoint¸¦ À§ÇÑ trap ¸í·É¾î¿¡ »ç¿ëµÈ´ÙÇÒÁö¶óµµ, ¿ä±¸µÇÁö´Â ¾Ê´Â´Ù. ; ¿¹¸¦ µé¾î, bit patternÀº ¹«È¿ÇÑ ¸í·É¾îÀÌ´Ù. breakpoint´Â ¾ÆÅ°ÅØÃÄÀÇ °¡Àå ÀÛÀº ¸í·É¾îº¸´Ù ±æ¾î¼­´Â ¾ÈµÈ´Ù.

MEMORY_INSERT_BREAKPOINT (addr, contents_cache)
MEMORY_REMOVE_BREAKPOINT (addr, contents_cache)
Insert or remove memory based breakpoints. Reasonable defaults (default_memory_insert_breakpoint and default_memory_remove_breakpoint respectively) have been provided so that it is not necessary to define these for most architectures. Architectures which may want to define MEMORY_INSERT_BREAKPOINT and MEMORY_REMOVE_BREAKPOINT will likely have instructions that are oddly sized or are not stored in a conventional manner.

breakpoint ±â¹Ý ¸Þ¸ð¸®¸¦ »ðÀÔÇÏ°í Á¦°ÅÇÑ´Ù. ÀûÀýÇÑ ±âº»°ª(°¢°¢ default_memory_insert_breakpoint¿Í default_memory_remove_breakpoint)Àº Á¦°øµÇ¾î¾ß ÇÏ¸ç ´ëºÎºÐÀÇ ¾ÆÅ°ÅØÃÄ¿¡ ÀÌ°ÍÀ» Á¤ÀÇÇÒ ÇÊ¿ä´Â ¾ø´Ù. MEMORY_INSERT_BREAK POINT¿Í MEMORY_REMOVE_BREAKPOINT¸¦ Á¤ÀÇÇÏ±æ ¿øÇÏ´Â ¾ÆÅ°ÅØÃĴ ¦ÀÌ ¾È¸Â´Â Å©±âÀÇ ¸í·É¾î³ª Æí¸®ÇÑ ¹æ¹ýÀ¸·Î ÀúÀåµÇÁö ¾ÊÀº ¸í·É¾î¸¦ °¡Áø´Ù. It may also be desirable (from an efficiency standpoint) to define custom breakpoint insertion and removal routines if BREAKPOINT_FROM_PC needs to read the target's memory for some reason.

¸¸ÀÏ BREAKPOINT_FROM_PC°¡ ¸î¸î ÀÌÀ¯·Î Ÿ°Ù ¸Þ¸ð¸®¸¦ ÀÐÀ» ÇÊ¿ä°¡ ÀÖ´Ù¸é, ÀÏ¹Ý breakpint »ðÀÔ°ú Á¦°Å ·çƾÀ» Á¤ÀÇÇÏ±æ ¿øÇÒ(È¿À²ÀûÀÎ standpoint) °ÍÀÌ´Ù.

CALL_DUMMY_P
A C expresson that is non-zero when the target suports inferior function calls.

Ÿ°ÙÀÌ ³»ºÎ ÇÔ¼ö È£ÃâÀ» Áö¿øÇÒ¶§ C Ç¥Çö½ÄÀº 0ÀÌ ¾Æ´Ï´Ù.

CALL_DUMMY_WORDS
Pointer to an array of LONGEST words of data containing host-byte-ordered REGISTER_BYTES sized values that partially specify the sequence of instructions needed for an inferior function call. Should be deprecated in favor of a macro that uses target-byte-ordered data.

³»ºÎ ÇÔ¼ö È£Ãâ¿¡ ÇÊ¿äÇÑ ¸í·É¾î ¼ø¼­¸¦ ÁöÁ¤ÇÏ´Â host-byte ¼ø¼­ÀÇ REGISTER_BYTESÅ©±âÀÇ °ªÀ» Æ÷ÇÔÇÏ´Â µ¥ÀÌÅÍÀÇ LONGEST ¿öµå ¹è¿­¿¡ ´ëÇÑ Æ÷ÀÎÅÍ. target-byte ¼ø¼­ µ¥ÀÌÅ͸¦ »ç¿ëÇÏ´Â ¸ÅÅ©·Î¶§¹®¿¡ ¹«½ÃµÇ¾î¾ß ÇÑ´Ù.

SIZEOF_CALL_DUMMY_WORDS
The size of CALL_DUMMY_WORDS. When CALL_DUMMY_P this must return a positive value. See also CALL_DUMMY_LENGTH.

CALL_DUMMY_WORDSÀÇ Å©±â. CALL_DUMMY_PÀ϶§, ÀÌ°ÍÀº ¾ç¼ö °ªÀ» ¹ÝȯÇÑ´Ù. ¶ÇÇÑ CALL_DUMMY_LENGTH¸¦ ÂüÁ¶Çضó.

CALL_DUMMY
A static initializer for CALL_DUMMY_WORDS. Deprecated.

CALL_DUMMY_WORDS¸¦ À§ÇÑ static initializer. ¾ø¾îÁ³´Ù.

CALL_DUMMY_LOCATION
See the file `inferior.h'.

ÆÄÀÏ `inferior.h'¸¦ ÂüÁ¶Çضó.

CALL_DUMMY_STACK_ADJUST
Stack adjustment needed when performing an inferior function call. Should be deprecated in favor of something like STACK_ALIGN.

½ºÅà Á¶Á¤Àº ³»ºÎ ÇÔ¼ö È£ÃâÀÌ ÀÌ·ç¾îÁ³À»¶§ ÇÊ¿äÇÏ´Ù. STACK_ALIGN°°Àº °Í¶§¹®¿¡ ¹«½ÃµÇ¾î¾ß ÇÑ´Ù.

CALL_DUMMY_STACK_ADJUST_P
Predicate for use of CALL_DUMMY_STACK_ADJUST. Should be deprecated in favor of something like STACK_ALIGN.

CALL_DUMMY_STACK_ADJUST »ç¿ëÀ» À§ÇÑ ¼ú¾î. STACK_ALIGN°°Àº °Í¶§¹®¿¡ ¹«½ÃµÇ¾î¾ß ÇÑ´Ù.

CANNOT_FETCH_REGISTER (regno)
A C expression that should be nonzero if regno cannot be fetched from an inferior process. This is only relevant if FETCH_INFERIOR_REGISTERS is not defined.

¸¸ÀÏ regnoÀÌ ³»ºÎ ÇÁ·Î¼¼½º¿¡¼­ fetchµÇÁö ¸øÇÑ´Ù¸é C Ç¥Çö½ÄÀº 0À̾´Â ¾ÈµÈ´Ù. ¸¸ÀÏ FETCH_INFERIOR_REGISTERS°¡ Á¤ÀǵǾî ÀÖÁö ¾Ê´Ù¸é ÀûÀýÇÏ´Ù.

CANNOT_STORE_REGISTER (regno)
A C expression that should be nonzero if regno should not be written to the target. This is often the case for program counters, status words, and other special registers. If this is not defined, GDB will assume that all registers may be written.

¸¸ÀÏ regnoÀÌ Å¸°Ù¿¡ ¾²¿©Á®¼­´Â ¾ÈµÈ´Ù¸é C Ç¥Çö½ÄÀº 0À̾´Â ¾ÈµÈ´Ù. Àͼ­Àº ÇÁ·Î±×·¥ Ä«¿îÅÍ, »óÅ ¿öµå ±×¸®°í ´Ù¸¥ Ưº°ÇÑ ·¹Áö½ºÅ͸¦ À§ÇÑ °æ¿ìÀÌ´Ù. ¸¸ÀÏ ÀÌ°ÍÀÌ Á¤ÀǵÇÁö ¾Ê¾Ò´Ù¸é, GDB´Â ¸ðµç ·¹Áö½ºÅ͵éÀÌ ¾²¿©Áú¼ö ÀÖ´Ù°í °¡Á¤ÇÑ´Ù.

DO_DEFERRED_STORES
CLEAR_DEFERRED_STORES
Define this to execute any deferred stores of registers into the inferior, and to cancel any deferred stores. Currently only implemented correctly for native Sparc configurations?

¾î¶² ·¹Áö½ºÅÍ ÀúÀåÀ» ³»ºÎ·Î ´ÊÃß¾î ½ÇÇàÇÏ°í ´ÊÃçÁø ÀúÀåÀ» Ãë¼ÒÇϱâ À§ÇØ ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. ÇöÀç native Sparc ¼³Á¤¿¡¼­¸¸ ¼öÇàµÇ´Â°¡?

COERCE_FLOAT_TO_DOUBLE (formal, actual)
If we are calling a function by hand, and the function was declared (according to the debug info) without a prototype, should we automatically promote floats to doubles? This macro must evaluate to non-zero if we should, or zero if we should leave the value alone.

¸¸ÀÏ Á÷Á¢ ÇÔ¼ö¸¦ È£ÃâÇÏ°í ÇÔ¼ö°¡ ¿øÇü ¾øÀÌ ¼±¾ðµÇ¾ú´Ù¸é, ¿ì¸®´Â ÀÚµ¿À¸·Î floats¸¦ doubles·Î ÇؾßÇϴ°¡? ÀÌ ¸ÅÅ©·Î´Â ¸¸ÀÏ ¿ì¸®°¡ Çà ÇÑ´Ù¸é 0ÀÌ ¾Æ´Ñ°ªÀ¸·Î Æò°¡Çϰųª °ª¸¸À» ³²°Ü ³õ´Â´Ù¸é 0À¸·Î Æò°¡µÈ´Ù. The argument actual is the type of the value we want to pass to the function. The argument formal is the type of this argument, as it appears in the function's definition. Note that formal may be zero if we have no debugging information for the function, or if we're passing more arguments than are officially declared (for example, varargs). This macro is never invoked if the function definitely has a prototype.

ÀÎÀÚ actual´Â ¿ì¸®°¡ ÇÔ¼ö¿¡ Àü´ÞÇÏ±æ ¿øÇÏ´Â °ªÀÇ Å¸ÀÔÀÌ´Ù. ÀÎÀÚ formal´Â ÀÌ ÀÎÀÚÀÇ Å¸ÀÔÀ̸ç ÇÔ¼ö Á¤Àǽà ³ªÅ¸³­´Ù. ¸¸ÀÏ ÇÔ¼ö¿¡ ´ëÇÑ µð¹ö±ëÁ¤º¸¸¦ °¡Áö°í ÀÖÁö ¾Ê´Ù¸é, ¶Ç´Â ¸¸ÀÏ °ø½ÄÀûÀ¸·Î ¼±¾ð(¿¹¸¦ µé¾î, °¡º¯ ÀÎÀÚ)µÈ°Í ÀÌ»óÀÇ ÀÎÀÚ¸¦ Àü´ÞÇÑ´Ù¸é formal´Â 0ÀÌ´Ù. ÀÌ ¸ÅÅ©·Î´Â ¸¸ÀÏ ÇÔ¼ö°¡ ¿øÇüÀ» °¡Áö°í ÀÖ´Ù¸é °áÄÚ È£ÃâµÇÁö ¾Ê´Â´Ù. The default behavior is to promote only when we have no type information for the formal parameter. This is different from the obvious behavior, which would be to promote whenever we have no prototype, just as the compiler does. It's annoying, but some older targets rely on this. If you want GDB to follow the typical compiler behavior--to always promote when there is no prototype in scope--your gdbarch init function can call set_gdbarch_coerce_float_to_double and select the standard_coerce_float_to_double function.

±âº» ÇൿÀº ¿ì¸®°¡ Á¤±ÔÀÎÀÚ¿¡ ´ëÇÑ Å¸ÀÔ Á¤º¸¸¦ °¡Áö°í ÀÖÁö ¾ÊÀ»¶§¸¸ Á¶ÀåµÈ´Ù. ÀÌ°ÍÀº ºÐ¸íÇ× Çൿ°ú´Â ´Ù¸£¸ç ÄÄÆÄÀÏ·¯°¡ Çϴ°Íó·³, ¿ì¸®°¡ ¿øÇüÀ» °¡Áö°í ÀÖÁö ¾ÊÀ»¶§´Â ¾ðÁ¦³ª Á¶ÀåµÈ´Ù. Â¥Áõ³ªÁö¸¸ ¸î¸î ¿¹Àü Ÿ°ÙµéÀÌ ÀÌ°Í¿¡ ÀÇÁ¸ÇÑ´Ù. ¸¸ÀÏ ¿©·¯ºÐÀÌ ÀüÇüÀûÀÎ ÄÄÆÄÀÏ·¯ ÇൿÀ» Çã¿ëÇÏ´Â GDB¸¦ ¿øÇÑ´Ù¸é--¹üÀ§³» ¿øÇüÀÌ ¾øÀ»¶§¸¸ Ç×»ó Á¶ÀåµÇµµ·Ï)--¿©·¯ºÐÀÇ gdbarch init ÇÔ¼ö´Â set_gdbarch_coerce_float_to_double¸¦ È£ÃâÇÏ°í standard_coerce_float_to_doubleÇÔ¼ö¸¦ ¼±ÅÃÇÑ´Ù.

CPLUS_MARKER
Define this to expand into the character that G++ uses to distinguish compiler-generated identifiers from programmer-specified identifiers. By default, this expands into '$'. Most System V targets should define this to '.'.

G++´Â ÄÄÆÄÀÏ·¯°¡ ¸¸µç ½Äº°ÀÚ¿Í ÇÁ·Î±×·¡¸Ó°¡ ¸¸µç ½Äº°ÀÚ¸¦ ±¸º°Çϱâ À§ÇØ »ç¿ëÇÏ´Â ¹®ÀÚ·Î È®ÀåÇϱâ À§ÇØ ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. ±âº»ÀûÀ¸·Î, ÀÌ°ÍÀº '$'·Î È®ÀåÇÑ´Ù. ´ëºÎºÐÀÇ System V Ÿ°ÙÀº ÀÌ°ÍÀ» '.'·Î Á¤ÀÇÇØ¾ß ÇÑ´Ù.

DBX_PARM_SYMBOL_CLASS
Hook for the SYMBOL_CLASS of a parameter when decoding DBX symbol information. In the i960, parameters can be stored as locals or as args, depending on the type of the debug record.

DBX ½Éº¼ Á¤º¸¸¦ µðº¸±ëÈú¶§ ÆĶó¹ÌÅÍ SYMBOL_CLASS¸¦ À§ÇÑ ÈÅ. i960¿¡¼­, ÆĶó¹ÌÅÍ´Â µð¹ö±× ·¹ÄÚµå ŸÀÔ¿¡ ÀÇÁ¸ÇÏ¿© ·ÎÄÃÀ̳ª ÀÎÀڷνá ÀúÀåµÈ´Ù.

DECR_PC_AFTER_BREAK
Define this to be the amount by which to decrement the PC after the program encounters a breakpoint. This is often the number of bytes in BREAKPOINT, though not always. For most targets this value will be 0.

ÇÁ·Î±×·¥ÀÌ breakpint¸¦ ¸¸³­ÈÄ PC¸¦ ÁÙÀ̱â À§ÇØ ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. ÀÌ°ÍÀº Ç×»óÀº ¾Æ´ÏÁö¸¸, BREAKPOINT³» ¹ÙÀÌÆ®ÀÇ ¼öÀÌ´Ù. ´ëºÎºÐÀÇ Å¸°ÙÀ» À§ÇØ, ÀÌ °ªÀº 0ÀÌ´Ù.

DECR_PC_AFTER_HW_BREAK
Similarly, for hardware breakpoints.

ºñ½ÁÇÏ°Ô, hardware breakpint¸¦ À§Çؼ­ Á¤ÀÇÇÑ´Ù.

DISABLE_UNSETTABLE_BREAK (addr)
If defined, this should evaluate to 1 if addr is in a shared library in which breakpoints cannot be set and so should be disabled.

¸¸ÀÏ Á¤ÀÇÇÑ´Ù¸é, ÀÌ°ÍÀº addr°¡ breakpint¸¦ ¼³Á¤ÇÒ¼ö ¾ø°í disableÇØ¾ß ÇÏ´Â °øÀ¯ ¶óÀ̺귯¸®³» ÀÖ´Ù¸é 1·Î Æò°¡µÇ¾î¾ß ÇÑ´Ù.

DO_REGISTERS_INFO
If defined, use this to print the value of a register or all registers.

¸¸ÀÏ Á¤ÀÇÇÑ´Ù¸é, ·¹Áö½ºÅÍÀÇ °ªÀ̳ª ¸ðµç ·¹Áö½ºÅ͸¦ Ãâ·ÂÇϱâ À§ÇØ ÀÌ°ÍÀ» »ç¿ëÇÑ´Ù.

DWARF_REG_TO_REGNUM
Convert DWARF register number into GDB regnum. If not defined, no conversion will be performed.

DWARF ·¹Áö½ºÅÍ ¼ö¸¦ GDB regnumÀ¸·Î ¹Ù²Û´Ù. ¸¸ÀÏ Á¤ÀǵǾî ÀÖÁö ¾Ê´Ù¸é, ¾î¶² º¯È¯µµ ÀϾÁö ¾Ê´Â´Ù.

DWARF2_REG_TO_REGNUM
Convert DWARF2 register number into GDB regnum. If not defined, no conversion will be performed.

DWARF2 ·¹Áö½ºÅÍ ¼ö¸¦ GDB regnumÀ¸·Î ¹Ù²Û´Ù. ¸¸ÀÏ Á¤ÀǵǾî ÀÖÁö ¾Ê´Ù¸é, ¾î¶² º¯È¯µµ ÀϾÁö ¾Ê´Â´Ù.

ECOFF_REG_TO_REGNUM
Convert ECOFF register number into GDB regnum. If not defined, no conversion will be performed.

ECOFF ·¹Áö½ºÅÍ ¼ö¸¦ GDB regnumÀ¸·Î ¹Ù²Û´Ù. ¸¸ÀÏ Á¤ÀǵǾî ÀÖÁö ¾Ê´Ù¸é, ¾î¶² º¯È¯µµ ÀϾÁö ¾Ê´Â´Ù.

END_OF_TEXT_DEFAULT
This is an expression that should designate the end of the text section.

ÀÌ°ÍÀº ÅؽºÆ® ¼½¼ÇÀÇ ³¡À» °¡¸®ÄÑ¾ß Çϴ ǥÇö½ÄÀÌ´Ù.

EXTRACT_RETURN_VALUE(type, regbuf, valbuf)
Define this to extract a function's return value of type type from the raw register state regbuf and copy that, in virtual format, into valbuf.

raw ·¹Áö½ºÅÍ »óÅ regbuf¿¡¼­ ÇÔ¼öÀÇ ¹Ýȯ °ª ŸÀÔ type¸¦ ¾ò±â À§ÇØ ÀÌ°ÍÀ» Á¤ÀÇÇϸç virtual Çü½Ä¿¡¼­ ±×°ÍÀ» valbuf·Î º¹»çÇÑ´Ù.

EXTRACT_STRUCT_VALUE_ADDRESS(regbuf)
When EXTRACT_STRUCT_VALUE_ADDRESS_P is non-zero, this is used to extract from an array regbuf (containing the raw register state) the address in which a function should return its structure value, as a CORE_ADDR (or an expression that can be used as one).

EXTRACT_STRUCT_VALUE_ADDRESS_P°¡ 0ÀÌ ¾Æ´Ò¶§, ÀÌ°ÍÀº ÇÔ¼ö°¡ CORE_ADDR(¶Ç´Â Çϳª·Î½á »ç¿ëµÉ¼ö Àִ ǥÇö½Ä)ó·³ ±¸Á¶Ã¼ °ªÀ» ¹ÝȯÇØ¾ß ÇÏ´Â ¹è¿­ regbuf(raw ·¹Áö½ºÅÍ »óŸ¦ Æ÷ÇÔÇÏ´Â) ÁÖ¼Ò¸¦ ¾ò±â À§ÇØ »ç¿ëµÈ´Ù.

EXTRACT_STRUCT_VALUE_ADDRESS_P
Predicate for EXTRACT_STRUCT_VALUE_ADDRESS.

EXTRACT_STRUCT_VALUE_ADDRESS¸¦ ¼ú¾î.

FLOAT_INFO
If defined, then the `info float' command will print information about the processor's floating point unit.

¸¸ÀÏ Á¤ÀǵǾî ÀÖ´Ù¸é, ±×·¯¸é `info float' ¸í·É¾î´Â ÇÁ·Î¼¼¼­ ºÎµ¿ ¼Ò¼öÁ¡ ´ÜÀ§¿¡ °üÇÑ Á¤º¸¸¦ Ãâ·ÂÇÑ´Ù.

FP_REGNUM
If the virtual frame pointer is kept in a register, then define this macro to be the number (greater than or equal to zero) of that register. This should only need to be defined if TARGET_READ_FP and TARGET_WRITE_FP are not defined.

¸¸ÀÏ virtual ÇÁ·¹ÀÓÆ÷ÀÎÅÍ°¡ ·¹Áö½ºÅÍ¿¡ À¯ÁöµÈ´Ù¸é, ±×·Á¸é ÀÌ ¸ÅÅ©·Î´Â ±× ·¹Áö½ºÅÍÀÇ ¼ö(0º¸´Ù Å©°Å³ª °°°Å³ª)·Î Á¤ÀǵǾî¾ß ÇÑ´Ù. ÀÌ°ÍÀº ¸¸ÀÏ TARGET_READ_FP¿Í TARGET_WRITE_FP°¡ Á¤ÀǵǾî ÀÖÁö ¾Ê´Ù¸é Á¤ÀÇµÉ ÇÊ¿ä°¡ ÀÖ´Ù.

FRAMELESS_FUNCTION_INVOCATION(fi)
Define this to an expression that returns 1 if the function invocation represented by fi does not have a stack frame associated with it. Otherwise return 0.

¸¸ÀÏ fiÀÌ ³ªÅ¸³»´Â ÇÔ¼ö È£ÃâÀÌ ±×°Í°ú °ü·ÃÀÖ´Â ½ºÅà ÇÁ·¹ÀÓÀ» °¡Áö°í ÀÖÁö ¾Ê´Ù¸é 1À» ¹ÝȯÇϴ ǥÇö½ÄÀ¸·Î ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. ±×·¸Áö ¾ÊÀ¸¸é 0À» ¹ÝȯÇÑ´Ù.

FRAME_ARGS_ADDRESS_CORRECT
See `stack.c'.

`stack.c'À» ÂüÁ¶Çضó.

FRAME_CHAIN(frame)
Given frame, return a pointer to the calling frame.

ÁÖ¾îÁø frame´Â È£Ãâ ÇÁ·¹ÀÓ¿¡ ´ëÇÑ Æ÷ÀÎÅ͸¦ ¹ÝȯÇÑ´Ù.

FRAME_CHAIN_COMBINE(chain, frame)
Define this to take the frame chain pointer and the frame's nominal address and produce the nominal address of the caller's frame. Presently only defined for HP PA.

ÇÁ·¹ÀÓ Ã¼ÀÎ Æ÷ÀÎÅ͸¦ °¡Á®¿À°í ÇÁ·¹ÀÓÀÇ ¸í¸ñ»óÀÇ ÁÖ¼Ò¿Í È£ÃâÀÚ ÇÁ·¹ÀÓÀÇ ¸í¸ñ»óÀÇ ÁÖ¼Ò¸¦ ¸¸µé±â À§ÇØ ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. ÇöÀç HP PA¸¦ À§Çؼ­¸¸ Á¤ÀǵȴÙ.

FRAME_CHAIN_VALID(chain, thisframe)
Define this to be an expression that returns zero if the given frame is an outermost frame, with no caller, and nonzero otherwise. Several common definitions are available:

¸¸ÀÏ ÁÖ¾îÁø ÇÁ·¹ÀÓÀÌ È£ÃâÀÚ ¾ø´Â ÃÖ»óÀ§ ÇÁ·¹ÀÓÀ̶ó¸é 0À» ¹ÝȯÇϴ ǥÇö½ÄÀÌ µÇµµ·Ï ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. ±×·¸Áö ¾ÊÀ¸¸é 0ÀÌ ¾Æ´Ñ°ªÀ» ¹ÝȯÇÑ´Ù. ¸î¸î ÀϹÝÀûÀÎ Á¤ÀÇ°¡ ÀÌ¿ë°¡´ÉÇÏ´Ù:

FRAME_INIT_SAVED_REGS(frame)
See `frame.h'. Determines the address of all registers in the current stack frame storing each in frame->saved_regs. Space for frame->saved_regs shall be allocated by FRAME_INIT_SAVED_REGS using either frame_saved_regs_zalloc or frame_obstack_alloc. FRAME_FIND_SAVED_REGS and EXTRA_FRAME_INFO are deprecated.

`frame.h'¸¦ ÂüÁ¶Çضó. ÇöÀç ½ºÅÃÇÁ·¹ÀÓ³» ¸ðµç ·¹Áö½ºÅÍÀÇ ÁÖ¼Ò¸¦ frame->saved_regs °¢°¢¿¡ ÀúÀåÇϵµ·Ï °áÁ¤ÇÑ´Ù. FRAME_FIND_SAVED_REGS¿Í EXTRA_FRAME_INFO´Â ¹«½ÃµÈ´Ù. frame->saved_regs¸¦ À§ÇÑ °ø°£Àº frame_saved_regs_zalloc³ª frame_obstack_alloc¸¦ »ç¿ëÇÏ´Â FRAME_INIT_SAVED_REGS¿¡ ÀÇÇØ ÇÒ´çµÇ¾î¾ß ÇÑ´Ù. FRAME_FIND_SAVED_REGS¿Í EXTRA_FRAME_INFO´Â ¾ø¾îÁ³´Ù.

FRAME_NUM_ARGS (fi)
For the frame described by fi return the number of arguments that are being passed. If the number of arguments is not known, return -1.

fi¿¡ ÀÇÇØ ±â¼úµÈ ÇÁ·¹ÀÓÀº Àü´ÞµÈ ÀÎÀÚÀÇ ¼ö¸¦ ¹ÝȯÇÑ´Ù. ¸¸ÀÏ ÀÎÀÚÀÇ ¼ö°¡ ¾Ë·ÁÁ® ÀÖÁö ¾Ê´Ù¸é, -1À» ¹ÝȯÇÑ´Ù.

FRAME_SAVED_PC(frame)
Given frame, return the pc saved there. This is the return address.

ÁÖ¾îÁø frameÀº °Å±â¿¡ ÀúÀåµÈ pc¸¦ ¹ÝȯÇÑ´Ù. ÀÌ°ÍÀº ¸®ÅÏ ÁÖ¼ÒÀÌ´Ù.

FUNCTION_EPILOGUE_SIZE
For some COFF targets, the x_sym.x_misc.x_fsize field of the function end symbol is 0. For such targets, you must define FUNCTION_EPILOGUE_SIZE to expand into the standard size of a function's epilogue.

¸î¸î COFF Ÿ°ÙÀ» À§ÇØ, ÇÔ¼ö end ½Éº¼ÀÇ x_sym.x_misc.x_fsize Çʵå´Â 0ÀÌ´Ù. °¢ Ÿ°ÙÀ» À§ÇØ, ¿©·¯ºÐÀº ÇÔ¼ö epilogueÀÇ Ç¥ÁØ Å©±â·Î È®ÀåÇϱâ À§ÇØ FUNCTION_EPILOGUE_SIZE¸¦ Á¤ÀÇÇØ¾ß ÇÑ´Ù.

FUNCTION_START_OFFSET
An integer, giving the offset in bytes from a function's address (as used in the values of symbols, function pointers, etc.), and the function's first genuine instruction. This is zero on almost all machines: the function's address is usually the address of its first instruction. However, on the VAX, for example, each function starts with two bytes containing a bitmask indicating which registers to save upon entry to the function. The VAX call instructions check this value, and save the appropriate registers automatically. Thus, since the offset from the function's address to its first instruction is two bytes, FUNCTION_START_OFFSET would be 2 on the VAX.

Á¤¼ö, ÇÔ¼ö ÁÖ¼Ò(½Éº¼ °ª, ÇÔ¼ö Æ÷ÀÎÅÍ µîÀ» »ç¿ë)¿¡¼­ ¹ÙÀÌÆ®·Î ÁÖ¾îÁø offset ±×¸®°í ÇÔ¼öÀÇ Ã³À½ ÁøÂ¥ ¸í·É¾î. ÀÌ°ÍÀº °ÅÀÇ ¸ðµç ¸Ó½Å¿¡¼­ 0ÀÌ´Ù.; ÇÔ¼ö ÁÖ¼Ò´Â º¸Åë óÀ½ ¸í·É¾îÀÇ ÁÖ¼ÒÀÌ´Ù. ±×·¯³ª, ¿¹¸¦ µé¾î VAX¿¡¼­ °¢ ÇÔ¼ö´Â ÇÔ¼ö¿¡ ´ëÇÑ ¿£Æ®¸®¸¦ ÀúÀåÇÏ´Â ·¹Áö½ºÅ͸¦ °¡¸®Å°´Â bitmask¸¦ Æ÷ÇÔÇÏ´Â 2 ¹ÙÀÌÆ®·Î ½ÃÀÛÇÑ´Ù. VAX call ¸í·É¾î´Â ÀÌ °ªÀ» °Ë»çÇÏ°í Àû´çÇÑ ·¹Áö½ºÅÍ¿¡ ÀÚµ¿À¸·Î ÀúÀåÇÑ´Ù. ÀÌ¿Í °°ÀÌ, ÇÔ¼ö ÁÖ¼Ò¿¡¼­ ù ¸í·É¾î±îÁöÀÇ offsetÀÌ 2 ¹ÙÀÌÆ®À̱⶧¹®¿¡, VAX¿¡¼­ FUNCTION_START_OFFSET´Â 2ÀÌ´Ù.

GCC_COMPILED_FLAG_SYMBOL
GCC2_COMPILED_FLAG_SYMBOL
If defined, these are the names of the symbols that GDB will look for to detect that GCC compiled the file. The default symbols are gcc_compiled. and gcc2_compiled., respectively. (Currently only defined for the Delta 68.)

¸¸ÀÏ Á¤ÀǵǾî ÀÖ´Ù¸é, À̰͵éÀº GCC°¡ ÄÄÆÄÀÏÇÑ ÆÄÀÏÀ» ãµµ·Ï GDB°¡ ã´Â ½Éº¼À̸§ÀÌ´Ù. ±âº» ½Éº¼Àº gcc_compiled. ±×¸®°í gcc2_compiled.ÀÌ´Ù. (ÇöÀç Delta 68¸¦ À§Çؼ­ Á¤ÀǵǾî ÀÖ´Ù.)

GDB_MULTI_ARCH
If defined and non-zero, enables suport for multiple architectures within GDB. This support can be enabled at two levels. At level one, only definitions for previously undefined macros are provided; at level two, a multi-arch definition of all architecture dependant macros will be defined.

¸¸ÀÏ Á¤ÀǵǾî ÀÖ°í 0ÀÌ ¾Æ´Ï¶ó¸é, GDB³» ¿©·¯ ¾ÆÅ°ÅØÃĸ¦ Áö¿øÇÒ¼ö ÀÖµû. Áö¿øÀº 2 ·¹º§¿¡¼­ °¡´ÉÇÏ´Ù. ÇÑ ·¹º§¿¡¼­, Àü¿¡ Á¤ÀǵÇÁö ¾ÊÀº ¸ÅÅ©·Î¸¦ À§ÇÑ Á¤ÀǸ¸ÀÌ Á¦°øµÈ´Ù.; ·¹º§ 2¿¡¼­, ¸ðµç ¾ÆÅ°ÅØÃÄ ÀÇÁ¸ ¸ÅÅ©·ÎÀÇ multi-arch Á¤ÀÇ°¡ Á¤ÀǵȴÙ.

GDB_TARGET_IS_HPPA
This determines whether horrible kludge code in `dbxread.c' and `partial-stab.h' is used to mangle multiple-symbol-table files from HPPA's. This should all be ripped out, and a scheme like `elfread.c' used instead.

`dbxread.c'¿Í `partial-stab.h'³»ÀÇ ½É°¢ÇÑ kludge Äڵ尡 HPPA¿¡¼­ ´ÙÁß ½Éº¼ Å×À̺í ÆÄÀϵéÀ» °ü¸®Çϱâ À§ÇØ »ç¿ëµÉÁö¾Æ´ÒÁö¸¦ °áÁ¤ÇÑ´Ù. ÀÌ°ÍÀº ¸ðµÎ ¾ø¾Ö¾ß ÇÏ¸ç ´ë½Å¿¡ `elfread.c'°°Àº ±¸Á¶¸¦ »ç¿ëÇضó.

GET_LONGJMP_TARGET
For most machines, this is a target-dependent parameter. On the DECstation and the Iris, this is a native-dependent parameter, since trhe header file `setjmp.h' is needed to define it. This macro determines the target PC address that longjmp will jump to, assuming that we have just stopped at a longjmp breakpoint. It takes a CORE_ADDR * as argument, and stores the target PC value through this pointer. It examines the current state of the machine as needed.

´ëºÎºÐÀÇ ¸Ó½ÅÀ» À§ÇØ, ÀÌ°ÍÀº Ÿ°Ù ÀÇÁ¸ÀûÀÎ ÆĶó¹ÌÅÍÀÌ´Ù. DECstation°ú Iris¿¡¼­, ÀÌ°ÍÀº native ÀÇÁ¸ ÀÎÀÚÀÌ´Ù. ¿Ö³ÄÇÏ¸é ½ÇÁ¦ Çì´õ ÆÄÀÏ `setjmp.h'°¡ Á¤Àǽà ÇÊ¿äÇÏ´Ù. ÀÌ ¸ÅÅ©·Î´Â longjmp¸¦ Á¡ÇÁÇÒ Å¸°Ù PC ÁÖ¼Ò¸¦ °áÁ¤Çϸç, longjmp breakpoint¿¡¼­ ¸ØÃß¾î¾ß ÇÑ´Ù°í °¡Á¤ÇÑ´Ù. ÀÎÀÚ·Î CORE_ADDR *¸¦ °¡Áö¸ç ÀÌ Æ÷ÀÎÅ͸¦ ÅëÇØ Å¸°Ù PC °ªÀ» ÀúÀåÇÑ´Ù. ÇÊ¿äÇÒ¶§¸¶´Ù ¸Ó½ÅÀÇ ÇöÀç »óŸ¦ °Ë»çÇÑ´Ù.

GET_SAVED_REGISTER
Define this if you need to supply your own definition for the function get_saved_register.

¸¸ÀÏ ¿©·¯ºÐÀÌ ÇÔ¼ö get_saved_register¸¦ À§ÇØ ÀÚ½ÅÀÇ Á¤ÀǸ¦ Á¦°øÇÒ ÇÊ¿ä°¡ ÀÖ´Ù¸é ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù.

HAVE_REGISTER_WINDOWS
Define this if the target has register windows.

¸¸ÀÏ Å¸°ÙÀÌ ·¹Áö½ºÅÍ À©µµ¿ìÀ» °¡Áø´Ù¸é ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù.

REGISTER_IN_WINDOW_P (regnum)
Define this to be an expression that is 1 if the given register is in the window.

¸¸ÀÏ ÁÖ¾îÁø ·¹Áö½ºÅÍ°¡ À©µµ¿ì¿¡ ÀÖ´Ù¸é Ç¥Çö½ÄÀÌ 1ÀÌ µÇµµ·Ï ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù.

IBM6000_TARGET
Shows that we are configured for an IBM RS/6000 target. This conditional should be eliminated (FIXME) and replaced by feature-specific macros. It was introduced in a haste and we are repenting at leisure.

IBM RS/6000 targetÀ» À§ÇØ ¼³Á¤µÇ¾ú´Ù´Â°ÍÀ» º¸¿©ÁØ´Ù. ÀÌ Á¶°ÇÀº ¾ø¾îÁ®¾ß(FIXME)Çϸç feature-specific ¸ÅÅ©·Î¿¡ ÀÇÇØ ´ëüµÇ¾î¾ß ÇÑ´Ù. ±×°ÍÀº ¼º±ÞÇÏ°Ô ¼Ò°³µÇ¾úÀ¸¸ç ÈÄȸÇÏ°í ÀÖ´Ù.

I386_USE_GENERIC_WATCHPOINTS
An x86-based target can define this to use the generic x86 watchpoint support; see section Algorithms.

x86 ±â¹Ý Ÿ°ÙÀº ÀϹÝÀûÀÎ x86 watchpint Áö¿øÀ» »ç¿ëÇϱâÀ§ÇØ ÀÌ°ÍÀ» Á¤ÀÇÇÒ¼ö ÀÖ´Ù.; Algorithms¼½¼ÇÀ» ÂüÁ¶Çضó.

SYMBOLS_CAN_START_WITH_DOLLAR
Some systems have routines whose names start with `$'. Giving this macro a non-zero value tells GDB's expression parser to check for such routines when parsing tokens that begin with `$'.

¸î¸î ½Ã½ºÅÛÀº `$'·Î ½ÃÀÛÇÏ´Â À̸§ÀÇ ·çƾÀ» °¡Áø´Ù. 0ÀÌ ¾Æ´Ñ °ªÀÇ ¸ÅÅ©·Î¸¦ ÁÖ´Â °ÍÀº `$'·Î ½ÃÀÛÇÏ´Â ÅäÅ«À» ÆĽÌÇÒ¶§ ±×·¯ÇÑ ·çƾÀ» °Ë»çÇϵµ·Ï GDB Ç¥Çö½Ä Æļ­¿¡°Ô ¸»Çϴ°ÍÀÌ´Ù. On HP-UX, certain system routines (millicode) have names beginning with `$' or `$$'. For example, $$dyncall is a millicode routine that handles inter-space procedure calls on PA-RISC.

HP-UX¿¡¼­, ¾î¶² ½Ã½ºÅÛ ·çƾ(millicode)Àº `$'³ª `$$'·Î ½ÃÀÛÇÏ´Â À̸§À» °¡Áø´Ù. ¿¹¸¦ µé¾î, $$dyncall´Â PA-RISC¿¡¼­ inter-space ÇÁ·Î½ÃÁ®¸¦ ó¸®ÇÏ´Â millicode ·çƾÀÌ´Ù.

IEEE_FLOAT
Define this if the target system uses IEEE-format floating point numbers.

¸¸ÀÏ Å¸°Ù ½Ã½ºÅÛÀÌ IEEE-Çü½Ä ºÎµ¿¼Ò¼öÁ¡ ¼ö¸¦ »ç¿ëÇÑ´Ù¸é ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù.

INIT_EXTRA_FRAME_INFO (fromleaf, frame)
If additional information about the frame is required this should be stored in frame->extra_info. Space for frame->extra_info is allocated using frame_obstack_alloc.

¸¸ÀÏ ÇÁ·¹ÀÓ¿¡ °üÇÑ Ãß°¡ÀûÀÎ Á¤º¸°¡ ¿ä±¸µÈ´Ù¸é, ÀÌ°ÍÀº frame->extra_info¿¡ ÀúÀåµÇ¾î¾ß ÇÑ´Ù. frame->extra_info¸¦ À§ÇÑ °ø°£Àº frame_obstack_alloc »ç¿ë½Ã ÇÒ´çµÈ´Ù.

INIT_FRAME_PC (fromleaf, prev)
This is a C statement that sets the pc of the frame pointed to by prev. [By default...]

ÀÌ°ÍÀº prev°¡ °¡¸®Å°´Â ÇÁ·¹ÀÓÀÇ pc¸¦ ¼³Á¤ÇÏ´Â C ¹®ÀåÀÌ´Ù.

INNER_THAN (lhs, rhs)
Returns non-zero if stack address lhs is inner than (nearer to the stack top) stack address rhs. Define this as lhs < rhs if the target's stack grows downward in memory, or lhs > rsh if the stack grows upward.

¸¸ÀÏ ½ºÅà ÁÖ¼Ò lhs°¡ ½ºÅà ÁÖ¼Ò rhsº¸´Ù ³»ºÎ(½ºÅà top¿¡ ´õ °¡±î¿î)¿¡ ÀÖ´Ù¸é 0ÀÌ ¾Æ´Ñ °ªÀÌ ¹ÝȯµÈ´Ù. ¸¸ÀÏ Å¸°Ù ½ºÅÃÀÌ ¸Þ¸ð¸®³» ¾Æ·¡ÂÊÀ¸·Î ¼ºÀåÇÑ´Ù¸é lhs < rhs·Î½á ÀÌ°ÍÀ» Á¤ÀÇÇÏ°í ¸¸ÀÏ ½ºÅÃÀÌ À§ÂÊÀ¸·Î ¼ºÀåÇÑ´Ù¸é lhs > rsh¸¦ Á¤ÀÇÇÑ´Ù.

IN_SIGTRAMP (pc, name)
Define this to return non-zero if the given pc and/or name indicates that the current function is a sigtramp.

¸¸ÀÏ ÁÖ¾îÁø pc¾Æ nameÀÌ ÇöÀç ÇÔ¼ö´Â sigtrampÀ̶ó´Â°ÍÀ» °¡¸®Å²´Ù¸é 0ÀÌ ¾Æ´Ñ °ªÀ» ¸®ÅÏÇϵµ·Ï ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù.

SIGTRAMP_START (pc)
SIGTRAMP_END (pc)
Define these to be the start and end address of the sigtramp for the given pc. On machines where the address is just a compile time constant, the macro expansion will typically just ignore the supplied pc.

isigtramp ´ÙÀ½¿¡ ÁÖ¾îÁø pcÀÇ ½ÃÀÛ°ú ³¡ ÁÖ¼Ò·Î À̰͵éÀ» Á¤ÀÇÇÑ´Ù. ÁÖ¼Ò´Â ÄÄÆÄÀÏ ½Ã°£ÀÎ ¸Ó½Å¿¡¼­, ¸ÅÅ©·Î È®ÀåÀº Á¦°øµÈ pc¸¦ ¹«½ÃÇÒ°ÍÀÌ´Ù.

IN_SOLIB_CALL_TRAMPOLINE (pc, name)
Define this to evaluate to nonzero if the program is stopped in the trampoline that connects to a shared library.

¸¸ÀÏ ÇÁ·Î±×·¥ÀÌ °øÀ¯ ¶óÀ̺귯¸®¿Í ¿¬°áÇÏ´Â trampoline¿¡¼­ ¸ØÃá´Ù¸é 0ÀÌ ¾Æ´Ñ °ªÀ¸·Î Æò°¡Çϵµ·Ï ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù.

IN_SOLIB_RETURN_TRAMPOLINE (pc, name)
Define this to evaluate to nonzero if the program is stopped in the trampoline that returns from a shared library.

¸¸ÀÏ ÇÁ·Î±×·¥ÀÌ °øÀ¯¶óÀ̺귯¸®¿¡¼­ ¹ÝȯµÇ´Â trampoline¿¡¼­ ¸ØÃá´Ù¸é 0ÀÌ ¾Æ´Ñ°ªÀ¸·Î Æò°¡Çϵµ·Ï ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù.

IN_SOLIB_DYNSYM_RESOLVE_CODE (pc)
Define this to evaluate to nonzero if the program is stopped in the dynamic linker.

¸¸ÀÏ ÇÁ·Î±×·¥ÀÌ µ¿Àû ¸µÄ¿³»¿¡¼­ ¸ØÃá´Ù¸é 0ÀÌ ¾Æ´Ñ°ªÀ¸·Î Æò°¡Çϵµ·Ï ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù.

SKIP_SOLIB_RESOLVER (pc)
Define this to evaluate to the (nonzero) address at which execution should continue to get past the dynamic linker's symbol resolution function. A zero value indicates that it is not important or necessary to set a breakpoint to get through the dynamic linker and that single stepping will suffice.

½ÇÇàÀº µ¿Àû ¸µÄ¿ ½Éº¼ Çؼ® ÇÔ¼ö¿¡¼­ °¡Áö±â À§ÇØ continueÇØ¾ß ÇÏ´Â (nonzero)ÁÖ¼Ò·Î Æò°¡Çϵµ·Ï ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. zero °ªÀº ±×°ÍÀº µ¿Àû ¸µÄ¿¸¦ ÅëÇØ ¾ò±â À§ÇØ breakpoint ¼³Á¤Çϴ°ÍÀº Áß¿äÇϰųª ÇÊ¿äÇÏÁö ¾Ê´Ù´Â°ÍÀ» °¡¸®Å°¸ç ±× ´ÜÀÏ steppingÀº ÃæºÐÇÏ´Ù.

IS_TRAPPED_INTERNALVAR (name)
This is an ugly hook to allow the specification of special actions that should occur as a side-effect of setting the value of a variable internal to GDB. Currently only used by the h8500. Note that this could be either a host or target conditional.

ÀÌ°ÍÀº GDB³» º¯¼ö °ªÀ» ¼³Á¤ÀÇ side-effect·Î½á ÀϾ¾ß Çϴ Ưº°ÇÑ ÇൿÀÇ ³»¿ªÀ» Çã¿ëÇÏ´Â ÁÁÁö ¾ÊÀº ÈÅÀÌ´Ù. ÇöÀç h8500¿¡¼­¸¸ »ç¿ëµÈ´Ù. ÀÌ°ÍÀº host³ª Ÿ°Ù Á¶°ÇÀ̾î¾ß ÇÑ´Ù.

NEED_TEXT_START_END
Define this if GDB should determine the start and end addresses of the text section. (Seems dubious.)

¸¸ÀÏ GDB°¡ ÅؽºÆ® ¼½¼ÇÀÇ ½ÃÀÛ°ú ³¡ ÁÖ¼Ò¸¦ °áÁ¤ÇØ¾ß ÇÑ´Ù¸é ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. (Àǽɽº·´´Ù.)

NO_HIF_SUPPORT
(Specific to the a29k.)
POINTER_TO_ADDRESS (type, buf)
Assume that buf holds a pointer of type type, in the appropriate format for the current architecture. Return the byte address the pointer refers to. See section Target Architecture Definition.

buf´Â ÇöÀç ¾ÆÅ°ÅØÃĸ¦ À§ÇÑ Àû´çÇÑ Çü½ÄÀ¸·Î Æ÷ÀÎÅÍ Å¸ÀÔ type¸¦ °¡Áø´Ù. Æ÷ÀÎÅÍ°¡ ÂüÁ¶ÇÏ´Â ¹ÙÀÌÆ® ÁÖ¼Ò¸¦ ¹ÝȯÇÑ´Ù. Target Architecture Definition ¼½¼ÇÀ» ÂüÁ¶Çضó.

REGISTER_CONVERTIBLE (reg)
Return non-zero if reg uses different raw and virtual formats. See section Target Architecture Definition.

¸¸ÀÏ regÀÌ ´Ù¸¥ raw¿Í virtual Çü½ÄÀ» »ç¿ëÇÑ´Ù¸é 0ÀÌ ¾Æ´Ñ°ªÀ» ¹ÝȯÇÑ´Ù. Target Architecture Definition ¼½¼ÇÀ» ÂüÁ¶Çضó.

REGISTER_RAW_SIZE (reg)
Return the raw size of reg. See section Target Architecture Definition.

regÀÇ raw »çÀÌÆ®¸¦ ¹ÝȯÇÑ´Ù. Target Architecture Definition ¼½¼ÇÀ» ÂüÁ¶Çضó.

REGISTER_VIRTUAL_SIZE (reg)
Return the virtual size of reg. See section Target Architecture Definition.

regÀÇ virtual Å©±â¸¦ ¹ÝȯÇÑ´Ù. Target Architecture Definition ¼½¼ÇÀ» ÂüÁ¶Çضó.

REGISTER_VIRTUAL_TYPE (reg)
Return the virtual type of reg. See section Target Architecture Definition.

regÀÇ virtual typeÀ» ¹ÝȯÇÑ´Ù. Target Architecture Definition ¼½¼ÇÀ» ÂüÁ¶Çضó.

REGISTER_CONVERT_TO_VIRTUAL(reg, type, from, to)
Convert the value of register reg from its raw form to its virtual form. See section Target Architecture Definition.

raw ÇüÅ¿¡¼­ virtual ÇüÅ·Π·¹Áö½ºÅÍÀÇ °ª reg¸¦ ¹Ù²Û´Ù. Target Architecture Definition ¼½¼ÇÀ» ÂüÁ¶Çضó.

REGISTER_CONVERT_TO_RAW(type, reg, from, to)
Convert the value of register reg from its virtual form to its raw form. See section Target Architecture Definition.

virtual ÇüÅ¿¡¼­ raw ÇüÅ·Π·¹Áö½ºÅÍ °ª reg¸¦ ¹ÝȯÇÑ´Ù. Target Architecture Definition ¼½¼ÇÀ» ÂüÁ¶ Çضó.

RETURN_VALUE_ON_STACK(type)
Return non-zero if values of type TYPE are returned on the stack, using the "struct convention" (i.e., the caller provides a pointer to a buffer in which the callee should store the return value). This controls how the `finish' command finds a function's return value, and whether an inferior function call reserves space on the stack for the return value. The full logic GDB uses here is kind of odd.

¸¸ÀÏ Å¸ÀÔ TYPEÀÇ °ªÀÌ "struct convention"À» »ç¿ëÇÏ´Â ½ºÅÿ¡¼­ ¹ÝȯµÈ´Ù¸é, 0ÀÌ ¾Æ´Ñ°ªÀ» ¹ÝȯÇÑ´Ù. (i.e., È£ÃâÀÚ´Â callee°¡ ¹Ýȯ°ªÀ» ÀúÁ¤ÇØ¾ß ÇÏ´Â buffer¿¡ ´ëÇÑ Æ÷ÀÎÅ͸¦ Á¦°øÇÑ´Ù.) ÀÌ°ÍÀº `finish' ¸í·É¾î°¡ ÇÔ¼öÀÇ ¸®ÅÏ°ªÀ» ¹ß°ßÇÏ´Â ¹æ¹ýÀ» Á¦¾îÇÏ¸ç ³»ºÎ ÇÔ¼ö È£ÃâÀÌ ¸®ÅÏ °ªÀ» À§ÇÑ ½ºÅó» °ø°£À» À¯ÁöÇÏ´ÂÁö¸¦ Á¦¾îÇÑ´Ù. ¿©±â¼­ GDB°¡ »ç¿ëÇÏ´Â ¿ÏÀüÇÑ ·ÎÁ÷Àº ¿©·¯ Á¾·ùÀÌ´Ù.

In other words, to indicate that a given type is returned by value using the struct convention, that type must be either a struct, union, array, or something RETURN_VALUE_ON_STACK likes, and something that USE_STRUCT_CONVENTION likes.

´Ù½Ã ¸»Çؼ­, ÁÖ¾îÁø ŸÀÔÀÌ struct conventionÀ» »ç¿ëÇÑ °ªÀ» ¸®ÅÏÇѴٴ°ÍÀ» °¡¸®Å°±â À§ÇØ Å¸ÀÔÀº struct, union, array ¶Ç´Â RETURN_VALUE_ON_STACK°°Àº °Í ±×¸®°í USE_STRUCT_CONVENTION °°Àº °ÍÁßÀ̾î¾ß ÇÑ´Ù. Note that, in C and C++, arrays are never returned by value. In those languages, these predicates will always see a pointer type, never an array type. All the references above to arrays being returned by value apply only to other languages.

C¿Í C++¿¡¼­ array´Â °ª¿¡ ÀÇÇØ ¸®ÅϵÇÁö ¾Ê´Â´Ù. ÀÌµé ¾ð¾î¿¡¼­, ÀÌµé ¼ú¾î´Â Ç×»ó ¹è¿­ ŸÀÔÀÌ ¾Æ´Ï¶ó Æ÷ÀÎÅÍ Å¸ÀÔÀ¸·Î º»´Ù. °ª¿¡ ÀÇÇØ ¸®ÅÏÇÏ´Â ¹è¿­¿¡ ´ëÇÑ ÂüÁ¶ ¸ðµÎ´Â ´Ù¸¥¾ð¾î¿¡µµ Àû¿ëµÈ´Ù.

SOFTWARE_SINGLE_STEP_P()
Define this as 1 if the target does not have a hardware single-step mechanism. The macro SOFTWARE_SINGLE_STEP must also be defined.

¸¸ÀÏ Å¸°ÙÀÌ Çϵå¿þ¾î single-step ¸ÞÄ«´ÏÁòÀ» °¡ÁöÁö ¾Ê´Â´Ù¸é ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. ¸ÅÅ©·Î SOFTWARE_SINGLE_STEP ¶ÇÇÑ Á¤ÀǵǾî¾ß ÇÑ´Ù.

SOFTWARE_SINGLE_STEP(signal, insert_breapoints_p)
A function that inserts or removes (depending on insert_breapoints_p) breakpoints at each possible destinations of the next instruction. See `sparc-tdep.c' and `rs6000-tdep.c' for examples.

´ÙÀ½ ¸í·É¾îÀÇ °¡´ÉÇÑ ¸ñÀûÁö¸¶´Ù breakpoint¸¦ »ðÀÔÇÏ°í Á¦°Å(insert_breapoints_p¿¡ ÀÇÁ¸)ÇÏ´Â ÇÔ¼ö. `sparc-tdep.c'¿Í `rs6000-tdep.c'¸¦ ÂüÁ¶Çضó.

SOFUN_ADDRESS_MAYBE_MISSING
Somebody clever observed that, the more actual addresses you have in the debug information, the more time the linker has to spend relocating them. So whenever there's some other way the debugger could find the address it needs, you should omit it from the debug info, to make linking faster.

¿µ¸®ÇÑ »ç¶÷Àº ¿©·¯ºÐÀÌ µð¹ö±× Á¤º¸¿¡¼­ °¡Áö´Â ÁÖ¼Ò°¡ ´õ ½ÇÁ¦ÀûÀϼö·Ï ¸µÄ¿´Â ±×°ÍµéÀ» Àç ÇÒ´çÇϴµ¥ ´õ ¸¹Àº ½Ã°£À» °¡Áø´Ù´Â°ÍÀ» ¾È´Ù. ±×·¡¼­ µð¹ö°Å°¡ ÇÊ¿äÇÑ ÁÖ¼Ò¸¦ ¹ß°ßÇÒ¼ö ÀÖ´Â ´Ù¸¥ ¹æ¹ýÀÌ ÀÖÀ»¶§¸¶´Ù, ¿©·¯ºÐÀº ´õ ºü¸¥ Á¤º¸¸¦ À§ÇØ µð¹ö±× Á¤º¸¿¡¼­ ±×°ÍÀ» »©¾ß ÇÑ´Ù. SOFUN_ADDRESS_MAYBE_MISSING indicates that a particular set of hacks of this sort are in use, affecting N_SO and N_FUN entries in stabs-format debugging information. N_SO stabs mark the beginning and ending addresses of compilation units in the text segment. N_FUN stabs mark the starts and ends of functions. SOFUN_ADDRESS_MAYBE_MISSING means two things:

SOFUN_ADDRESS_MAYBE_MISSING´Â Ưº°È÷ ÀÌ·± Á¾·ùÀÇ hack ÁýÇÕÀº stabs Çü½Ä µð¹ö±ë Á¤º¸³» N_SO¿Í N_FUN ¿£Æ®¸®¿¡ ¿µÇâÀ» Áشٴ°ÍÀ» °¡¸®Å²´Ù. N_SO stabÀº ÅؽºÆ® ¼¼±×¸ÕÆ®³» ÄÄÆÄÀÏ ´ÜÀ§ÀÇ ½ÃÀÛ°ú ³¡ ÁÖ¼Ò¸¦ Ç¥½ÃÇÑ´Ù. N_FUN stabÀº ÇÔ¼öÀÇ ½ÃÀÛ°ú ³¡À» Ç¥½ÃÇÑ´Ù.

PCC_SOL_BROKEN
(Used only in the Convex target.)

(Convex Ÿ°Ù¿¡¼­¸¸ »ç¿ëµÈ´Ù.)

PC_IN_CALL_DUMMY
See `inferior.h'.

`inferior.h'¸¦ ÂüÁ¶Çضó.

PC_LOAD_SEGMENT
If defined, print information about the load segment for the program counter. (Defined only for the RS/6000.)

¸¸ÀÏ Á¤ÀǵǾî ÀÖ´Ù¸é, ÇÁ·Î±×·¥ Ä«¿îÆ®¸¦ À§ÇÑ ·Îµå ¼¼±×¸ÕÆ®¿¡ °üÇÑ Á¤º¸¸¦ Ãâ·ÂÇÑ´Ù.(RS/6000¿¡¼­¸¸ Á¤ÀǵȴÙ.)

PC_REGNUM
If the program counter is kept in a register, then define this macro to be the number (greater than or equal to zero) of that register.

¸¸ÀÏ ÇÁ·Î±×·¥ Ä«¿îÆ®°¡ ·¹Áö½ºÅÍ¿¡ À¯ÁöµÈ´Ù¸é, ÀÌ ¸ÅÅ©·Î¸¦ ±× ·¹Áö½ºÅÍÀÇ ¼ö (0º¸´Ù Å©°Å³ª °°´Ù)°¡ µÇµµ·Ï Á¤ÀÇÇÑ´Ù. This should only need to be defined if TARGET_READ_PC and TARGET_WRITE_PC are not defined.

ÀÌ°ÍÀº ¸¸ÀÏ TARGET_READ_PC¿Í TARGET_WRITE_PC°¡ Á¤ÀǵǾî ÀÖÁö ¾Ê´Ù¸é Á¤ÀÇÇÒ ÇÊ¿ä°¡ ÀÖ´Ù.

NPC_REGNUM
The number of the "next program counter" register, if defined.

¸¸ÀÏ Á¤ÀǵǾî ÀÖ´Ù¸é, "next program counter" ·¹Áö½ºÅÍÀÇ ¼ö.

NNPC_REGNUM
The number of the "next next program counter" register, if defined. Currently, this is only defined for the Motorola 88K.

¸¸ÀÏ Á¤ÀǵǾî ÀÖ´Ù¸é, "next next program counter" ·¹Áö½ºÅÍÀÇ ¼ö. ÇöÀç, ÀÌ°ÍÀº Motorola 88K¿¡¼­¸¸ Á¤ÀǵȴÙ.

PARM_BOUNDARY
If non-zero, round arguments to a boundary of this many bits before pushing them on the stack.

¸¸ÀÏ 0ÀÌ ¾Æ´Ï¶ó¸é, ±×°ÍµéÀ» ½ºÅÿ¡ ³Ö±â Àü¿¡ ¸¹Àº ºñÆ®ÀÇ °æ°è·Î ÀÎÀÚ¸¦ roundÇÑ´Ù.

PRINT_REGISTER_HOOK (regno)
If defined, this must be a function that prints the contents of the given register to standard output.

¸¸ÀÏ Á¤ÀǵǾî ÀÖ´Ù¸é, ÀÌ°ÍÀº ÁÖ¾îÁø Ž¯Áö½ºÅÍÀÇ ³»¿ëÀ» Ç¥ÁØ Ãâ·ÂÀ¸·Î Ãâ·ÂÇÏ´Â ÇÔ¼öÀ̾î¾ß ÇÑ´Ù.

PRINT_TYPELESS_INTEGER
This is an obscure substitute for print_longest that seems to have been defined for the Convex target.

ÀÌ°ÍÀº Convex Ÿ°ÙÀ» À§ÇØ Á¤ÀǵǾî¾ß ÇÏ´Â print_longest¸¦ À§ÇÑ ¾Ö¸ÅÇÑ ´ëüÇÔ¼öÀÌ´Ù.

PROCESS_LINENUMBER_HOOK
A hook defined for XCOFF reading.

XCOFF Àб⸦ À§ÇØ Á¤ÀÇµÈ ÈÅ.

PROLOGUE_FIRSTLINE_OVERLAP
(Only used in unsupported Convex configuration.)

(Áö¿øµÇÁö ¾Ê´Â Convex ¼³Á¤»çÇ׿¡¼­¸¸ »ç¿ëµÈ´Ù.)

PS_REGNUM
If defined, this is the number of the processor status register. (This definition is only used in generic code when parsing "$ps".)

¸¸ÀÏ Á¤Àǵȴٸé, ÀÌ°ÍÀº ÇÁ·Î¼¼¼­ »óÅ ·¹Áö½ºÅÍÀÇ ¼öÀÌ´Ù. (ÀÌ Á¤ÀÇ´Â "$ps"¸¦ ÆĽÌÇÒ¶§ ÀϹÝÀûÀÎ Äڵ忡¼­¸¸ »ç¿ëµÈ´Ù.)

POP_FRAME
Used in `call_function_by_hand' to remove an artificial stack frame and in `return_command' to remove a real stack frame.

ÀÌ°ø ½ºÅà ÇÁ·¹ÀÓÀ» Á¦°ÅÇϱâ À§ÇØ `call_function_by_hand'¿¡¼­ »ç¿ëµÇ¸ç ½ÇÁ¦ ½ºÅà ÇÁ·¹ÀÓÀ» Á¦°ÅÇϱâ À§ÇØ `return_command'¿¡¼­ »ç¿ëµÈ´Ù.

PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr)
Define this to push arguments onto the stack for inferior function call. Returns the updated stack pointer value.

³»ºÎ ÇÔ¼ö È£ÃâÀ» À§ÇÑ ½ºÅÿ¡ ÀÎÀÚµéÀ» ³Ö±â À§ÇØ ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. °»½ÅµÈ ½ºÅà Æ÷ÀÎÅÍ °ªÀ» ¹ÝȯÇÑ´Ù.

PUSH_DUMMY_FRAME
Used in `call_function_by_hand' to create an artificial stack frame.

Àΰø ½ºÅà ÇÁ·¹ÀÓÀ» ¸¸µé±â À§ÇØ `call_function_by_hand'¿¡¼­ »ç¿ëµÈ´Ù.

REGISTER_BYTES
The total amount of space needed to store GDB's copy of the machine's register state.

¸Ó½Å ·¹Áö½ºÅÍ »óÅÂÀÇ GDB º¹»çº»À» ÀúÀåÇϱâ À§ÇØ ÇÊ¿äÇÑ °ø°£ÀÇ ÃÑ ¾ç.

REGISTER_NAME(i)
Return the name of register i as a string. May return NULL or NUL to indicate that register i is not valid.

½ºÆ®¸µÀ¸·Î½á ·¹Áö½ºÅÍÀÇ À̸§ i¸¦ ¹ÝȯÇÑ´Ù. ·¹Áö½ºÅÍ i°¡ À¯È¿ÇÏÁö ¾Ê´Ù´Â°ÍÀ» °¡¸®Å°±â À§ÇØ NULL³ª NULÀ» ¹ÝȯÇÑ´Ù.

REGISTER_NAMES
Deprecated in favor of REGISTER_NAME.

REGISTER_NAME´Â ¾ø¾îÁ³´Ù.

REG_STRUCT_HAS_ADDR (gcc_p, type)
Define this to return 1 if the given type will be passed by pointer rather than directly.

¸¸ÀÏ ÁÖ¾îÁø ŸÀÔÀÌ Á÷Á¢º¸´Ù Æ÷ÀÎÅÍ·Î Àü´ÞµÈ´Ù¸é 0À» ¸®ÅÏÇϴ°ÍÀ¸·Î Á¤ÀÇÇÑ´Ù.

SAVE_DUMMY_FRAME_TOS (sp)
Used in `call_function_by_hand' to notify the target dependent code of the top-of-stack value that will be passed to the the inferior code. This is the value of the SP after both the dummy frame and space for parameters/results have been allocated on the stack.

³»ºÎ Äڵ忡 Àü´ÞµÉ top-of-stack °ªÀÇ Å¸°Ù ÀÇÁ¸ÀûÀÎ Äڵ带 ÀνÄÇÏ°Ô ÇϱâÀ§ÇØ `call_function_by_hand'¿¡¼­ »ç¿ëµÈ´Ù. ÀÌ°ÍÀº dummy frame°ú °ª/°á°ú¸¦ À§ÇÑ °ø°£ÀÌ ½ºÅÿ¡ ÇÒ´çµÈÈÄ¿¡ SPÀÇ °ªÀÌ´Ù.

SDB_REG_TO_REGNUM
Define this to convert sdb register numbers into GDB regnums. If not defined, no conversion will be done.

sdb ·¹Áö½ºÅÍÀÇ ¼ö¸¦ GDB regnumÀ¸·Î ¹Ù²Ù±â À§ÇØ ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. ¸¸ÀÏ Á¤ÀǵǾî ÀÖÁö¾Ê´Ù¸é, ¾î¶² º¯È­µµ ÇàÇØÁöÁö ¾Ê´Â´Ù.

SHIFT_INST_REGS
(Only used for m88k targets.)

(m88k Ÿ°Ù¿¡¼­¸¸ »ç¿ëµÈ´Ù.)

SKIP_PERMANENT_BREAKPOINT
Advance the inferior's PC past a permanent breakpoint. GDB normally steps over a breakpoint by removing it, stepping one instruction, and re-inserting the breakpoint. However, permanent breakpoints are hardwired into the inferior, and can't be removed, so this strategy doesn't work. Calling SKIP_PERMANENT_BREAKPOINT adjusts the processor's state so that execution will resume just after the breakpoint. This macro does the right thing even when the breakpoint is in the delay slot of a branch or jump.

³»ºÎ PC´Â ¿µ±¸ breakpoint Àü´ÞÀ» ³ª¾Æ°¡°Ô ÇÑ´Ù. GDB´Â º¸Åë Á¦°Å½Ã breakpint À§·Î stepÇϸç ÇÑ ¸í·É¾î¸¦ stepÇÏ°í breakpint¸¦ ´Ù½Ã »ðÀÔÇÑ´Ù. ±×·¯³ª, ¿µ±¸ breakpoint´Â ³»ºÎ¿¡¼­ ¿À·¡°¡°í Á¦°ÅÇÒ¼ö ¾ø´Ù. ±×·¡¼­ ÀÌ·¯ÇÑ Àü·«Àº ÀÛµ¿ÇÏÁö ¾Ê´Â´Ù. SKIP_PERMANENT_BREAKPOINT È£ÃâÀº ÇÁ·Î¼¼¼­ »óŸ¦ ¸ÂÃß¸ç ½ÇÇàÀº breakpointÈÄ¿¡ ´Ù½Ã ½ÃÀÛÇÑ´Ù. ÀÌ ¸ÅÅ©·Î´Â breakpoint°¡ branch³ª jumpÀÇ delay slot¿¡ ÀÖÀ»¶§Á¶Â÷ ÀÛ´çÇÑ °ÍÀÌ´Ù.

SKIP_PROLOGUE (pc)
A C expression that returns the address of the "real" code beyond the function entry prologue found at pc.

ÇÔ¼ö ¿£Æ®¸® prologue¸¦ ³Ñ¾î¼± "real" ÄÚµå ÁÖ¼Ò¸¦ ¹ÝȯÇÏ´Â C Ç¥Çö½ÄÀº pc¿¡¼­ ¹ß°ßµÈ´Ù.

SKIP_PROLOGUE_FRAMELESS_P
A C expression that should behave similarly, but that can stop as soon as the function is known to have a frame. If not defined, SKIP_PROLOGUE will be used instead.

C Ç¥Çö½ÄÀº ºñ½ÁÇÏ°Ô ÇൿÇÏÁö¸¸ ÇÔ¼ö°¡ ÇÁ·¹ÀÓÀ» °¡Áö°í Àִ°ÍÀ¸·Î ¾Ë·ÁÁöÀÚ¸¶ÀÚ ¸ØÃâ¼ö ÀÖ´Ù. ¸¸ÀÏ Á¤ÀǵǾî ÀÖÁö ¾Ê´Ù¸é, SKIP_PROLOGUE°¡ ´ë½Å »ç¿ëµÈ´Ù.

SKIP_TRAMPOLINE_CODE (pc)
If the target machine has trampoline code that sits between callers and the functions being called, then define this macro to return a new PC that is at the start of the real function.

¸¸ÀÏ Å¸°Ù ¸Ó½ÅÀÌ È£ÃâÀÚ¿Í ÇÔ¼ö°¡ È£Ãâ »çÀÌ¿¡ ÀÖ´Â trampoline ÄÚµå¶ó¸é, ±×·¯¸é ½ÇÁ¦ ÇÔ¼öÀÇ ½ÃÀÛÀÎ »õ PC¸¦ ¹ÝȯÇϵµ·Ï ÀÌ ¸ÅÅ©·Î¸¦ Á¤ÀÇÇضó.

SP_REGNUM
If the stack-pointer is kept in a register, then define this macro to be the number (greater than or equal to zero) of that register.

¸¸ÀÏ stack pointer°¡ ·¹Áö½ºÅÍ¿¡ À¯ÁöµÈ´Ù¸é, ±×·¯¸é ±× ·¹Áö½ºÅÍÀÇ ¼ö(0º¸´Ù Å©°Å³ª °°°Å³ª)°¡ µÇµµ·Ï ÀÌ ¸ÅÅ©·Î¸¦ Á¤ÀÇÇضó. This should only need to be defined if TARGET_WRITE_SP and TARGET_WRITE_SP are not defined.

ÀÌ°ÍÀº ¸¸ÀÏ TARGET_WRITE_SP¿Í TARGET_WRITE_SPÀÌ Á¤ÀǵǾî ÀÖÁö ¾Ê´Ù¸é Á¤ÀÇÇÒ ÇÊ¿ä°¡ ÀÖ´Ù.

STAB_REG_TO_REGNUM
Define this to convert stab register numbers (as gotten from `r' declarations) into GDB regnums. If not defined, no conversion will be done.

stab ·¹Áö½ºÅÍÀÇ ¼ö("r" ¼±¾ð¿¡¼­ °®´Â °Íó·³)¸¦ GDB regnum À¸·Î ¹Ù²Ù±â À§ÇØ ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. ¸¸ÀÏ Á¤ÀǵǾî ÀÖÁö ¾Ê´Ù¸é, ¾î¶°ÇÑ º¯È¯µµ ÇàÇØÁöÁö ¾Ê´Â´Ù.

STACK_ALIGN (addr)
Define this to adjust the address to the alignment required for the processor's stack.

ÁÖ¼Ò¸¦ ÇÁ·Î¼¼¼­ ½ºÅÃÀ» ¿ä±¸ÇÏ´Â Á¤·Ä·Î ¸ÂÃß±â À§ÇØ ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù.

STEP_SKIPS_DELAY (addr)
Define this to return true if the address is of an instruction with a delay slot. If a breakpoint has been placed in the instruction's delay slot, GDB will single-step over that instruction before resuming normally. Currently only defined for the Mips.

¸¸ÀÏ ÁÖ¼Ò°¡ delay slotÀ» °¡Áø ¸í·É¾î¶ó¸é ÂüÀ» ¹ÝȯÇϵµ·Ï ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. ¸¸ÀÏ breakpint°¡ ¸í·É¾îÀÇ delay slot¿¡ À§Ä¡ÇØ ÀÖ´Ù¸é, GDB´Â º¸Åë ´Ù½Ã ½ÃÀÛÇϱâ Àü¿¡ ¸í·É¾î¸¦ single-stepÇÑ´Ù. ÇöÀç Mips¿¡¼­¸¸ Á¤ÀǵȴÙ.

STORE_RETURN_VALUE (type, valbuf)
A C expression that stores a function return value of type type, where valbuf is the address of the value to be stored.

C Ç¥Çö½ÄÀº ŸÀÔ typeÀÇ °ªÀ» ¸®ÅÏÇÏ´Â ÇÔ¼ö¸¦ ÀúÀåÇϸç, valbuf´Â ÀúÀåµÇ¾î¾ßÇÏ´Â °ªÀÇ ÁÖ¼ÒÀÌ´Ù.

SUN_FIXED_LBRAC_BUG
(Used only for Sun-3 and Sun-4 targets.)

(Sun-3°ú Sun-4 Ÿ°Ù¿¡¼­¸¸ »ç¿ëµÈ´Ù.)

SYMBOL_RELOADING_DEFAULT
The default value of the "symbol-reloading" variable. (Never defined in current sources.)

"symbol-reloading" º¯¼öÀÇ ±âº» °ª. (ÇöÀç ¼Ò½º¿¡´Â °áÄÚ Á¤ÀǵǾî ÀÖÁö ¾Ê´Ù.)

TARGET_BYTE_ORDER_DEFAULT
The ordering of bytes in the target. This must be either BIG_ENDIAN or LITTLE_ENDIAN. This macro replaces TARGET_BYTE_ORDER which is deprecated.

Ÿ°Ù³» ¹ÙÀÌÆ® ¼ø¼­. ÀÌ°ÍÀº BIG_ENDIAN³ª LITTLE_ENDIAN À̾î¾ß ÇÑ´Ù. ÀÌ ¸ÅÅ©·Î´Â ¹«½ÃµÇ´Â TARGET_BYTE_ORDER¸¦ ´ë½ÅÇÑ´Ù.

TARGET_BYTE_ORDER_SELECTABLE_P
Non-zero if the target has both BIG_ENDIAN and LITTLE_ENDIAN variants. This macro replaces TARGET_BYTE_ORDER_SELECTABLE which is deprecated.

¸¸ÀÏ Å¸°ÙÀÌ BIG_ENDIAN°ú LITTLE_ENDIAN º¯Á¾À̶ó¸é 0ÀÌ ¾Æ´Ñ°ªÀÌ´Ù. ÀÌ ¸ÅÅ©·Î´Â ¹«½ÃµÇ´Â TARGET_BYTE_ORDER_SELECTABLE¸¦ ´ë½ÅÇÑ´Ù.

TARGET_CHAR_BIT
Number of bits in a char; defaults to 8.

char ºñÆ®ÀÇ ¼ö; ±âº»Àº 8.

TARGET_COMPLEX_BIT
Number of bits in a complex number; defaults to 2 * TARGET_FLOAT_BIT. At present this macro is not used.

complex ¼ö ºñÆ® ¼ö;±âº»Àº 2 * TARGET_FLOAT_BIT. ÇöÀç ÀÌ ¸ÅÅ©·Î´Â »ç¿ëµÇÁö ¾Ê´Â´Ù.

TARGET_DOUBLE_BIT
Number of bits in a double float; defaults to 8 * TARGET_CHAR_BIT.

double float ºñÆ® ¼ö;±âº»Àº 8 * TARGET_CHAR_BIT

TARGET_DOUBLE_COMPLEX_BIT
Number of bits in a double complex; defaults to 2 * TARGET_DOUBLE_BIT. At present this macro is not used.

double complex ºñÆ® ¼ö;±âº»Àº 2 * TARGET_DOUBLE_BIT ÇöÀç ÀÌ ¸ÅÅ©·Î´Â »ç¿ëµÇÁö ¾Ê´Â´Ù.

TARGET_FLOAT_BIT
Number of bits in a float; defaults to 4 * TARGET_CHAR_BIT.

float ºñÆ® ¼ö; ±âº»Àº 4 * TARGET_CHAR_BIT.

TARGET_INT_BIT
Number of bits in an integer; defaults to 4 * TARGET_CHAR_BIT.

integer ºñÆ® ¼ö;±âº»Àº 4 * TARGET_CHAR_BIT.

TARGET_LONG_BIT
Number of bits in a long integer; defaults to 4 * TARGET_CHAR_BIT.

long integer ºñÆ® ¼ö;±âº»Àº 4 * TARGET_CHAR_BIT

TARGET_LONG_DOUBLE_BIT
Number of bits in a long double float; defaults to 2 * TARGET_DOUBLE_BIT.

long double float ºñÆ® ¼ö;±âº»Àº 2 * TARGET_DOUBLE_BIT

TARGET_LONG_LONG_BIT
Number of bits in a long long integer; defaults to 2 * TARGET_LONG_BIT.

long long integer ºñÆ® ¼ö;±âº»Àº 2 * TARGET_LONG_BIT

TARGET_PTR_BIT
Number of bits in a pointer; defaults to TARGET_INT_BIT.

Æ÷ÀÎÅÍ ºñÆ® ¼ö;±âº»Àº TARGET_INT_BIT

TARGET_SHORT_BIT
Number of bits in a short integer; defaults to 2 * TARGET_CHAR_BIT.

short integer ºñÆ® ¼ö;±âº»Àº 2 * TARGET_CHAR_BIT

TARGET_READ_PC
TARGET_WRITE_PC (val, pid)
TARGET_READ_SP
TARGET_WRITE_SP
TARGET_READ_FP
TARGET_WRITE_FP
These change the behavior of read_pc, write_pc, read_sp, write_sp, read_fp and write_fp. For most targets, these may be left undefined. GDB will call the read and write register functions with the relevant _REGNUM argument.

À̰͵éÀº read_pc, write_pc, read_sp, write_sp, read_fp and write_fpÀÇ ÇàÀ§¸¦ ¹Ù²Û´Ù. ´ëºÎºÎÀÇ Å¸°ÙÀ» À§ÇØ, À̰͵éÀº Á¤ÀǵÇÁö ¾ÊÀºÃ¤·Î ³²¾Æ ÀÖ´Ù. GDB´Â _REGNUM ÀÎÀÚ¿Í °ü·ÃµÇ¾î ÀÐ°í ¾²´Â ·¹Áö½ºÅÍ ÇÔ¼ö¸¦ È£ÃâÇÑ´Ù. These macros are useful when a target keeps one of these registers in a hard to get at place; for example, part in a segment register and part in an ordinary register.

ÀÌµé ¸ÅÅ©·Î´Â Ÿ°ÙÀÌ ÀûÀýÇÏ°Ô °¡Áö±â ¾î·Á¿î ÀÌµé ·¹Áö½ºÅ͵éÁß Çϳª¸¦ À¯ÁöÇÒ¶§ À¯¿ëÇÏ´Ù.;¿¹¸¦ µé¾î, ¼¼±×¸ÕÆ® ·¹Áö½ºÅÍÀÇ ÀÏºÎ¿Í ÀϹÝÀû ·¹Áö½ºÅÍÀÇ ÀϺÎ.

TARGET_VIRTUAL_FRAME_POINTER(pc, regp, offsetp)
Returns a (register, offset) pair representing the virtual frame pointer in use at the code address pc. If virtual frame pointers are not used, a default definition simply returns FP_REGNUM, with an offset of zero.

ÄÚµå ÁÖ¼Ò pc¿¡¼­ »ç¿ëµÇ´Â virtual ÇÁ·¹ÀÓ Æ÷ÀÎÅ͸¦ Ç¥ÇöÇÏ´Â (register, offset) ½ÖÀ» ¹ÝȯÇÑ´Ù. ¸¸ÀÏ virtual ÇÁ·¹ÀÓ Æ÷ÀÎÅÍ°¡ »ç¿ëµÇÁö ¾Ê´Â´Ù¸é, ±âº» Á¤ÀÇ´Â ´Ü¼øÈ÷ 0ÀÎ offsetÀ» °¡Áö°í FP_REGNUM¸¦ ¹ÝȯÇÑ´Ù.

TARGET_HAS_HARDWARE_WATCHPOINTS
If non-zero, the target has support for hardware-assisted watchpoints. See section Algorithms, for more details and other related macros.

¸¸ÀÏ 0ÀÌ ¾Æ´Ï¶ó¸é, Ÿ°ÙÀº Çϵå¿þ¾î-°ü·Ã watchpoint¸¦ Áö¿øÇÑ´Ù. ¼¼ºÎ»çÇ×°ú ´Ù¸¥ °ü·Ã ¸ÅÅ©·Î¸¦ À§ÇØ Algorithms ¼½¼ÇÀ» ÂüÁ¶Çضó.

USE_STRUCT_CONVENTION (gcc_p, type)
If defined, this must be an expression that is nonzero if a value of the given type being returned from a function must have space allocated for it on the stack. gcc_p is true if the function being considered is known to have been compiled by GCC; this is helpful for systems where GCC is known to use different calling convention than other compilers.

¸¸ÀÏ Á¤ÀǵǾú´Ù¸é, ÀÌ°ÍÀº ÁÖ¾îÁø type °ªÀÌ ½ºÅÿ¡ ÇÒ´çµÈ °ø°£À» °¡Á®¾ßÇÏ´Â ÇÔ¼ö¿¡¼­ ¹ÝȯµÈ´Ù¸é 0ÀÌ ¾Æ´Ñ Ç¥Çö½ÄÀ̾î¾ß ÇÑ´Ù. ¸¸ÀÏ °í·ÁÇÑ ÇÔ¼ö°¡ GCC¿¡ ÀÇÇØ ÄÄÆÄÀϵǾú´Ù¸é gcc_p´Â ÂüÀÌ´Ù.; ÀÌ°ÍÀº GCC´Â ´Ù¸¥ ÄÄÆÄÀÏ·¯º¸´Ù ´Ù¸¥ È£Ãâ º¯È¯À» »ç¿ëÇÑ´Ù°í ¾Ë·ÁÁø ½Ã½ºÅÛ¿¡ À¯¿ëÇÏ´Ù.

VARIABLES_INSIDE_BLOCK (desc, gcc_p)
For dbx-style debugging information, if the compiler puts variable declarations inside LBRAC/RBRAC blocks, this should be defined to be nonzero. desc is the value of n_desc from the N_RBRAC symbol, and gcc_p is true if GDB has noticed the presence of either the GCC_COMPILED_SYMBOL or the GCC2_COMPILED_SYMBOL. By default, this is 0.

dbx-style µð¹ö±ë Á¤º¸¸¦ À§ÇØ, ¸¸ÀÏ ÄÄÆÄÀÏ·¯°¡ LBRAC/RBRAC ºí·°³» º¯¼ö ¼±¾ðÀ» ÇÏ¿´´Ù¸é, ÀÌ°ÍÀº 0ÀÌ ¾Æ´Ñ°ÍÀ¸·Î Á¤ÀÇÇØ¾ß ÇÑ´Ù. desc°¡ N_RBRAC ½Éº¼¿¡¼­ n_desc °ªÀÌ°í, ¸¸ÀÏ GDB°¡ GCC_COMPILED_SYMBOL³ª GCC2_COMPILED_SYMBOLÀÇ Á¸À縦 ÀνÄÇÑ´Ù¸é gcc_p´Â ÂüÀÌ´Ù. ±âº»ÀûÀ¸·Î, ÀÌ°ÍÀº 0ÀÌ´Ù.

OS9K_VARIABLES_INSIDE_BLOCK (desc, gcc_p)
Similarly, for OS/9000. Defaults to 1.

OS/9000¿¡¼­ ºñ½ÁÇÏ´Ù. ±âº»Àº 1.

Motorola M68K target conditionals.

Motorola M68K Ÿ°Ù Á¶°Çµé.

BPT_VECTOR
Define this to be the 4-bit location of the breakpoint trap vector. If not defined, it will default to 0xf.

breakpoint trap vectorÀÇ 4 ºñÆ® À§Ä¡¿¡ ÀÌ°ÍÀ» Á¤ÀÇÇÑ´Ù. ¸¸ÀÏ Á¤ÀǵǾî ÀÖÁö ¾Ê´Ù¸é, ±×°ÍÀº 0xfÀÌ ±âº»ÀÌ´Ù.

REMOTE_BPT_VECTOR
Defaults to 1.

±âº»Àº 1.

Adding a New Target

»õ Ÿ°Ù Ãß°¡Çϱâ

The following files define a target to GDB:

´ÙÀ½ ÆÄÀϵéÀº GDB¿¡ ´ëÇÑ Å¸°ÙÀ» Á¤ÀÇÇÑ´Ù.:

`gdb/config/arch/ttt.mt'
Contains a Makefile fragment specific to this target. Specifies what object files are needed for target ttt, by defining `TDEPFILES=...' and `TDEPLIBS=...'. Also specifies the header file which describes ttt, by defining `TM_FILE= tm-ttt.h'.

ÀÌ Å¸°ÙÀ» À§ÇÑ Makefile fragment¸¦ Æ÷ÇÔÇÑ´Ù. ¾î¶² ¿ÀºêÁ§Æ® ÆÄÀÏÀÌ `TDEPFILES=...'¿Í `TDEPLIBS=...'¸¦ Á¤ÀÇÇÑ Å¸°Ù tttÀÌ ÇÊ¿äÇÑÁö¸¦ ÁöÁ¤ÇÑ´Ù. ¶ÇÇÑ `TM_FILE = tm-ttt.h'¸¦ Á¤ÀÇÇÏ¿© ttt¸¦ ±â¼úÇÏ´Â Çì´õ ÆÄÀÏÀ» ÁöÁ¤ÇÑ´Ù. You can also define `TM_CFLAGS', `TM_CLIBS', `TM_CDEPS', but these are now deprecated, replaced by autoconf, and may go away in future versions of GDB.

¿©·¯ºÐÀº `TM_CFLAGS', `TM_CLIBS', `TM_CDEPS'¸¦ Á¤ÀÇÇÑ´Ù. ±×·¯³ª ÇöÀç´Â ¹«½ÃµÇ¸ç autoconf·Î ´ëüµÇ¾ú´Ù. ±×¸®°í GDBÀÇ ³ªÁß ¹öÀü¿¡ ¾ø¾îÁ³´Ù.

`gdb/config/arch/tm-ttt.h'
(`tm.h' is a link to this file, created by configure). Contains macro definitions about the target machine's registers, stack frame format and instructions.

(`tm.h'´Â configure°¡ ¸¸µç ÀÌ ÆÄÀÏ¿¡ ´ëÇÑ ¸µÅ©ÀÌ´Ù.) Ÿ°Ù ¸Ó½Å ·¹Áö½ºÅÍ, ½ºÅà ÇÁ·¹ÀÓ Çü½Ä°ú ¸í·É¾î¿¡ ´ëÇÑ ¸ÅÅ©·Î Á¤ÀǸ¦ Æ÷ÇÔÇÑ´Ù.

`gdb/ttt-tdep.c'
Contains any miscellaneous code required for this target machine. On some machines it doesn't exist at all. Sometimes the macros in `tm-ttt.h' become very complicated, so they are implemented as functions here instead, and the macro is simply defined to call the function. This is vastly preferable, since it is easier to understand and debug.

ÀÌ Å¸°Ù ¸Ó½Å¿¡ ¿ä±¸µÇ´Â ±âŸ ÄÚµåµéÀ» Æ÷ÇÔÇÑ´Ù. ¸î¸î ¸Ó½Å¿¡¼­, ±×°ÍÀº ¸ðµÎ Á¸ÀçÇÏÁö´Â ¾Ê´Â´Ù. °¡²û `tm-ttt.h'³» ¸ÅÅ©·Î´Â ¸Å¿ì º¹ÀâÇØÁ®¼­ ´ë½Å ¿©±â ÇÔ¼ö·Î½á ¼öÇàµÇ¸ç ¸ÅÅ©·Î´Â ´Ü¼øÈ÷ ÇÔ¼ö È£ÃâÀ» Á¤ÀÇÇÑ´Ù. ÀÌÇØÈ÷±âµµ µð¹ö±×Çϱ⵵ ½±±â¶§¹®¿¡ ÀÌ°ÍÀº ¸Å¿ì ÁÁ´Ù.

`gdb/config/arch/tm-arch.h'
This often exists to describe the basic layout of the target machine's processor chip (registers, stack, etc.). If used, it is included by `tm-ttt.h'. It can be shared among many targets that use the same processor.

Ÿ°Ù ¸Ó½Å ÇÁ·Î¼¼½º Ĩ(·¹Áö½ºÅÍ, ½ºÅà µî)ÀÇ ±âº» ·¹À̾ƿôÀ» ¼³¸íÇϱâ À§ÇØ Á¸ÀçÇÑ´Ù. ¸¸ÀÏ »ç¿ëµÈ´Ù¸é, `tm-ttt.h'¿¡ ÀÇÇØ Æ÷ÇԵȴÙ. °°Àº ÇÁ·Î¼¼½º¸¦ »ç¿ëÇÏ´Â ¸¹Àº Ÿ°Ùµé»çÀÌ¿¡ °øÀ¯µÈ´Ù.

`gdb/arch-tdep.c'
Similarly, there are often common subroutines that are shared by all target machines that use this particular architecture.

ºñ½ÁÇÏ°Ô, ÀÌ Æ¯Á¤ ¾ÆÅ°ÅØÃĸ¦ »ç¿ëÇÏ´Â ¸ðµç Ÿ°Ù ¸Ó½Å¿¡ ÀÇÇØ °øÀ¯µÇ´Â ÀϹÝÀû ¼­ºê·çƾÀÌ ÀÖ´Ù.

If you are adding a new operating system for an existing CPU chip, add a `config/tm-os.h' file that describes the operating system facilities that are unusual (extra symbol table info; the breakpoint instruction needed; etc.). Then write a `arch/tm-os.h' that just #includes `tm-arch.h' and `config/tm-os.h'.

¸¸ÀÏ ¿©·¯ºÐÀÌ Á¸ÀçÇÏ´Â CPU ĨÀ» À§ÇÑ »õ OS¸¦ Ãß°¡ÇÑ´Ù¸é, Ưº°ÇÑ OS ±â´ÉÀ» ±â¼úÇÏ´Â `config/tm-os.h' ÆÄÀÏÀ» Ãß°¡Çضó. ±×¸®°í ´ÜÁö #includes `tm-arch.h'¿Í `config/tm-os.h'¸¦ Æ÷ÇÔÇÏ´Â `arch/tm-os.h'¸¦ ¾´´Ù.


Go to the first, previous, next, last section, table of contents.